
COMPUTERS & LAW
Journal for the Australian and New Zealand Societies

for Computers and the Law

E d ito rs : C la ire E l ix , M e lissa L e s s i and L a u ra S e e to IS S N 0 8 1 1 7 2 2 5

N u m b e r: 5 8 D e ce m b e r 2 0 0 4

Managing Software Development Agreements: A Practical
Guide*

Alec Christie, Middletons Lawyers

Alec Christie is a partner of Middletons Lawyers specialising in Information Technology and Intellectual Property matters.
He has practised extensively throughout the Asia Pacific region and currently heads a team in the Sydney office of

Middletons Lawyers with a strong software industry focus.

Software Development Agreements
address situations in which companies
outsource the development of a
software application to a third party
and establish, prior to the commencing
of the development work, the rights
and obligations of the parties in
relation to both the product and the
process.

Software development may be
required in many scenarios including
where:

• a company is seeking to lift its
performance and, for example,
requires a procurement
management system that

streamlines, records and prompts
each stage of its procurement cycle
in order to deliver better savings
(Performance Enhancement);

• a company has identified an
opportunity within the market to
introduce a new product
(Commercialisation); or

• an application is required in order
to comply with various laws, for
example relating to tax
management or file retention
(Compliance).

These are the most obvious categories
of software development and any

business would probably require a
formal agreement to address the
contractual commitments associated
with these situations. However,
software development also arises in
less formal or clear-cut instances, such
as when a company’s contracted IT
consultant develops a minor patch to
interface between the company’s
intranet and a database. While
payment for the development work in
this case may be covered by a general
retainer agreement, the development
work itself may well be the subject of
a separate agreement, whether or not
written.

Continues page 3

in this issue:
Managing Software Development Agreements: A
Practical Guide... \

Alec Christie

FSR impacts on financial services technology........... 10

Charles Schofield

Moving Targets: Defamation over the internet............... 17

Belinda Thompson & Anne Tyedin

E-commerce and patent protection................................. 19

Ross McFarlane

Online transactions between lenders and borrowers
- proposed changes to the Uniform Consumer
Credit Code... 12

Trudi Lodge & Regina Kho

Managing Software Development Agreements: A Practical Guide
Continued from page 1

Contract management is crucial to any
software development. However, it is
important to draw a distinction
between contract management and
contract administration. While contract
administration relates to ensuring that
agreements are properly on foot and
that key dates are not forgotten,
managing IT contracts (in particular
software development agreements) is a
process that should begin from
conception of the “deal” to ensure that
the transaction is properly tracked,
monitored, documented and controlled
to deliver optimal outcomes, using the
agreement to steer the relationship and
the obligations of the parties.

Good contract management begins
with the actual agreement because it is
through the process of negotiating and
documenting the agreement that the
parties address issues, resolve concerns
and, most importantly, maintain high
levels of trust and confidence and
achieve both their shared and
independent objectives.

This article considers the key issues
that one should consider prior to
embarking on the software
development exercise and which
should be addressed in the Software
Development Agreement, where
possible, highlighting the distinct
concerns of both customers and
software developers. This article also
considers two recent court decisions in
relation to software development
agreements and their practical
implications for software developers
and customers.

Planning

Planning is the most important stage
and, from a contract perspective, it is
very helpful to have an understanding
of the following matters:

• What are the customer’s
operational needs (Requirements)?

• How is this product going to be
used (Objectives)?

• What are the technical and
hardware limitations
(Specifications)?

• Does the customer seek to own the
intellectual property rights (IPR)?

• Who will ascertain and scope the

requirements and specifications
(Scoping)?

• What critical events relate to the
development project (Milestones)?

• How will the software be tested and
by whom (Testing)?

• How will the acceptance plan be
formulated and applied
(Acceptance)?

• How will the software be delivered
to the customer and who is
responsible for the roll out
(Implementation)?

• How will on-going support and
maintenance be coordinated and
will service level agreements apply
(On-going Service)?

• What are the key risks that the
customer is seeking to avert
(Warranties/Indemnities)?

• How has the deal been sold and are
the expectations reasonable
(Bid/Representations: RACV v
Unisys)?

N ature of C ustom er

The more sophisticated the customer,
the more likely the customer is to have
a view on the above issues. However,
often the customer will rely heavily on
the developer for guidance and
assistance.

Conversely, developers will often
incorrectly assume that a customer
knows what it wants. This is one of the
classic mistakes which leads to
disputes in many IT agreements.

By considering the above issues from a
contract perspective, the parties to a
Software Development Agreement
may pre-empt any concems/issues and
set out their accepted methods of
conduct in such cases, creating the
foundation for a much more
cooperative relationship.

Benefit of Conflict

Customers not wanting to seem pushy
and developers wanting to appear
supportive will often avoid initial
disagreement, so as not to miss what
appears to be a “good deal” at the time.
In reality, however, a solid debate of
the fundamentals upfront is likely to
flesh-out any concerns (of both the

customer and the developer), assist to
document resolutions in advance and
prevent impasses later.

Neither the customer nor the developer
should hesitate to vigorously negotiate
important issues and requirements.

R equirem ents

A software development cannot
succeed if the customer’s requirements
are not properly ascertained and
documented. Unfortunately, the
customer’s requirements are often not
adequately considered.

Given that Software Development
Agreements typically deal with highly
customised products, it is also vitally
important to ensure that the customer’s
requirements are linked to the Software
Development Agreement. From a
contract management perspective,
there is no standard way to address and
capture these requirements. However,
there are a few strategies that are quite
effective and they include:

Attaching a schedule to the Software
Development Agreement

Such a schedule should set out the
specific requirements of the customer
and then be referenced in the operative
clauses of the Agreement.

Listing assumptions in relation to
the Software Development
Agreement

The benefit of listing assumptions in
the Software Development Agreement
is that they may address the concerns
and requirements of both parties and
they can relate to the product as well as
the process. If you choose to list
assumptions, however, be sure to also
list consequences or resolutions for the
failure of the assumptions and make
these practical. So, for example, an
assumption may be that the application
will interface and operate in
conjunction with the then current
Standard Operating Environment of the
customer and, if it does not, the
resolution may be that the developer
will, free of charge, modify the
developed product to ensure its
compatibility.

Warranties

If a requirement is particularly

Computers & Law December 2004 3

Managing Software Development Agreements: A Practical Guide

important a customer should request a
warranty in relation to that issue,
bearing in mind that the value of the
warranty may well be controlled by a
“limitation of liability” clause.
Similarly, a developer may seek a
warranty from the customer that the
customer has properly considered its
requirements in relation to the
proposed development and has
described them accurately and
completely.

During the process of ascertaining the
requirements, it is important to ensure
that the project is consistent with the
customer’s business plan, that the
stakeholders approve and support the
project and that the Software
Development Agreement receives
appropriate review by the appropriate
staff of both the customer and the
developer.

Objectives

In practice, there is often little overlap
between the objectives of the customer
and the developer. It is important,
therefore, for each to be sensitive to the
objectives of the other during the
negotiations, the drafting of the
agreement and also during any instance
of dispute resolution.

C ustom er Objectives

As previously stated, the three key
reasons that customers seek to enter
into software development are
performance enhancement,
commercialisation and compliance.
Some of the main contractual
considerations in relation to such
objectives are:

Performance Enhancement

If this is the customer’s main objective,
the parties should:

(a) benchmark the existing
performance at the time of the
Software Development
Agreement and specify clearly
what the target performance level
to be achieved is;

(b) identify any constraints that apply
to the use of the developed
application that may prevent the
customer from achieving the
desired performance level when
using the developed application;

and

(c) consider how much training will
be required and the feasibility of
an education campaign.

Commercialisation

If the customer seeks the assistance of
the developer to create an application
so that it can be commercialised, the
following concerns will be pivotal:

(a) the developer must be able to
warrant that it is authorised to
enter into the Software
Development Agreement;

(b) rights related consents (including
moral rights) must be obtained in
advance;

(c) the confidential information of
the customer should be
adequately protected; and

(d) the customer may consider asking
the developer to refrain from
creating competing applications
for other members of the same
industry.

Compliance

Compliance related developments
typically interpret applicable
legislation and create tools to allow
companies to comply with the
legislation. In such cases:

(a) clarify who is responsible for
maintaining the currency of the
developed application throughout
legislative changes;

(b) consider the frequency of
updating the developed
application; and

(c) ensure that the application will
provide the customer enough time
to rectify any errors generated by
the developed application.

Developer Objectives

Developers will often seek to enter into
Software Development Agreements for
entirely different reasons, such as:

Market Share

The developer may simply be seeking
a good solid sale and timely payment.

Reputation Enhancement

The developer may perceive the
software development to be a good
opportunity to add a reputable client to

their client list, in which case the right
to issue press releases and consider the
project as a reference site may be
central to the developer’s needs. The
customer may wish to impose
conditions in relation to how their
name and logo are used, particularly
any trademarks that may be centrally
controlled by an overseas head office.

New Market

The developer may be keen to enter
into the Software Development
Agreement in order to gain strategic
know-how and to penetrate new
markets for services that are up and
coming.

The developer should ensure that it can
freely use its know-how and that the
know-how is not assigned in any
restrictive manner to the customer. The
customer should ensure that the
developer has the financial means to
complete the project, given that the
developer may have made a very
competitive (and possibly unprofitable)
bid and ultimately find that the project
was not properly costed.

Specifications

The specifications typically refer to the
technical requirements of the
application that are required for the
application to function as intended.

H ard w are req u ired

From the outset, once the customer’s
requirements have been addressed, the
developer should be able to define the
hardware required for the developed
application to properly function.
Alternatively, sometimes the
developed application will be created
to match a particular hardware system,
especially when the customer’s IT
infrastructure is costly and inflexible.

SOE C om patibility

iMany larger organisations maintain a
Standard Operating Environment
(SOE) which is a template list of
applications that are tested for the
organisation’s environment and
delivered as a SOE to all desktops in
that organisation. Subject to the
sophistication of the customer, the
developer will sometimes assume the
role of testing the application for
compatibility with the customer’s

4 Computers & Law December 2004

Managing Software Development Agreements: A Practical Guide

SOE.

If the developer is responsible for
managing SOE compatibility, as well
as the developed application, it is
reasonable to expect that all relevant
compatibility testing will be conducted
by the developer. Otherwise, the
developer will likely want relevant
assurances from the customer or,
alternatively, to expressly exclude this
responsibility.

When considering the SOE, it is
important to consider the actual
products comprising the SOE, as well
as future versions of those products
and the means of distribution. These
issues should also be considered in
relation to the developed application.

A daptability

The customer should clearly explain its
requirements in relation to scalability
and upgradeability. This links back to
the importance of consulting with
relevant stakeholders and the business
plan of the customer. That is, is
expansion of the business expected and
will the developed application be able
to grow with the customer?

Intellectual P ro p erty Rights

(IPR)

The importance of ownership of IPR in
a developed application varies. Often
this issue will be the subject of
significant negotiation,
notwithstanding the fact that often
neither party has a meaningful strategy
in relation to IPR. Other times, even
when IPR ownership is critical, the
topic is often ignored by the agreement
in which case, under copyright law, a
lot of the IPR will remain with the
author, which is likely to be the
developer.

O w nership v Licensing

If the developed application is intended
to assist the customer with issues of
compliance or performance
enhancement then the developer giving
the customer a worldwide, perpetual,
fully paid up, royalty free, non
exclusive and non transferable licence
may suffice. However, if the
application is required for purposes of
commercialisation then the customer is
likely to require exclusive rights to the

IPR or unencumbered ownership.

If licensing is the preferred approach,
consider how this may affect the
pricing. Typically, when the customer
owns the IPR in the developed
application the developer may charge
higher fees, representing the
developer’s lost opportunity to licence
the product to other customers.

Another very important aspect to the
IPR negotiation in a software
development is the treatment of pre
existing and third party IPR’s, which
should be appropriately licensed as
required to meet the parties’ respective
objectives.

Tax treatm en t

Software development may be able to
assist a customer to secure valuable tax
concessions. A tax specialist should be
consulted in this regard to ensure that
the Software Development Agreement
reflects the requirements of the
legislation, if this aspect is important to
the customer.

As explained in the case of Industry
Research & Development Board v
Unisys Information Services Australia
Ply Ltd (formerly Synercom Australia
Pty Ltd) [1997] 111 FCA (19 August
1997), the main test as regards the tax
concessions is whether the activity
involves innovation or technical risk.
However, as is demonstrated by this
case, this is not a simple test to apply
and expert advice should be obtained.

Exclusivity

Given that Software Development
Agreements will often be geared to
enhance or create competitive
advantages, issues of exclusivity arise
during negotiations or, if not, they can
arise later as a matter of dispute. It is
important to consider issues of
exclusivity in the very early stages.
Referring to the customer’s business
plan and understanding the customer’s
objectives should assist in this regard.

Assignm ent of Rights

Any assignment of IPR in the
developed software (or any component
part) should be in writing, complete
and effective from the relevant date.
The parties should be careful not to
neglect associated rights of privacy,
confidentiality, exclusivity and moral

rights.

Confidentiality

While seemingly obvious,
confidentiality provisions should be
included in each Software
Development Agreement and, more
importantly, the parties should
administer such provisions rigorously
to ensure that confidentiality is
maintained.

Non-com pete clauses

A non-compete clause is really an
extension of the exclusivity and
confidentiality provisions, effectively
seeking to ensure that the parties to the
Software Development Agreement do
not encroach on each other’s
commercial territory.

If the Software Development
Agreement is drafted such that the
developer creates an application for the
benefit of the customer, which it then
licences to the customer, then the
customer may require a non-compete
clause which prevents the developer
from directly targeting clients of the
customer or providing the application
to the customer’s competitors. In other
cases, the developer will insist that the
customer not compete with the
developer. This may be the case when
the developer is seeking to recover
costs and make a profit by on-going
licensing fees for the application.

Scoping

While the key task in the Software
Development Agreement is the
development, many critical ancillary
tasks are often included that are likely
to impact the successful management
of the software development. The most
preliminary of these is scoping the
development.

Scoping is a very important phase,
particularly when the customer is not
certain as to its own requirements.

Consultancy A greem ent

One option for the scoping is to enter
into a separate preliminary consultancy
agreement. Typically these are on a
time and materials cost basis. The
deliverable of such an agreement may
well be a project plan for the
development of the application or

Computers & Law December 2004 5

Managing Software Development Agreements: A Practical Guide

perhaps a list of options.

Module of Software Development
Agreement

Sometimes the scoping exercise is
conducted as a discrete module or
phase of the Software Development
Agreement. This is particularly the
case when the application is derived
from the standard product of the
developer that is to be modified
slightly for the purposes of the
customer. Customer sign-off on and
payment for the scoping deliverables
should be pre-conditions for
proceeding to the development phase
of the project. The benefit of this
approach over the consultancy
agreement is that less time is wasted
between the phases on the negotiation
of the agreements.

Time frame

While at times an additional phase may
appear time consuming, it is often the
case that time spent scoping, designing
and planning is often a fraction of the
time that would otherwise be spent
arguing, disputing and contesting the
Software Development Agreement.

Skill base

Skill-base is a very qualitative aspect
of IT contracting. The customer should
consider insisting that the same
consultants/project managers are
involved in the scoping and the
development phases and that, in any
event, all staff involved are of an
appropriate level of experience and
education/'skill.

M ilestones

Milestones can assist the parties to a
software development agreement to
manage the risk involved in each stage.
Milestones effectively provide a
cleaner modular structure that
facilitates early addressing of
issues/termination when a party fails to
perform in accordance with those
milestones.

Milestones are particularly useful when
the parties have priced the software
development on a fixed price basis and
therefore have increased the risk levels.
It is important to ensure that any
milestones described are meaningful,
so that if the Software Development
Agreement is terminated on the failure

to attain a milestone, a substitute
developer may easily be engaged to
complete the project if required.

Aggressive customers will request that
payment of any fixed price be linked to
the completion of a deliverable which
may well be denoted by the attainment
of a milestone.

Change M anagem ent

If the software development is
complex enough to be able to be
broken down into milestones, the
parties should ensure that a change
management clause is included to
facilitate any changes that are required
and/or to clarify expectations.

Testing & Acceptance

Testing and acceptance are often
linked. Given that the developer is
likely to have a better knowledge of
the developed application than the
customer, it is worthwhile conducting
the testing in a collaborative fashion
and under the guidance of, if not by,
the developer in the presence of the
customer.

The testing plan should relate
specifically to the requirements of the
customer and should, if possible, be
crafted well in advance so that
acceptance can be structured and easily
explored.

Testing environment

Testing may be conducted in any
number of environments. However,
from a customer’s perspective,
acceptance of a product before it is
installed and operating on the
customer’s system could be risky
insofar as it could complicate any later
customer claims that the product is not
acceptable.

User Testing

Given that the benefits of developed
applications are often qualitative rather
than quantitative, the parties should
consider that more interactive methods
of testing may be required. For
example, an application may be able to
deliver all the required user reports and
technically satisfy the requirements of
the customer, however, it may be user-
unfriendly to the extent that it does not
achieve its purpose of performance

enhancement. In such a case, end-user
testing may be appropriate to
determine if the customer's ultimate
commercial requirements are satisfied.

Acceptance

As stated above, acceptance should be
a consultative process both internally
and externally. The same stakeholders
who were consulted at the time the
customer’s requirements were collated
should be consulted again at the time
the product is being tested.

Most agreements will have a provision
that states that if the customer fails to
promptly test/accept the application it
will be deemed accepted after a certain
period. Customers should consider
refining such a provision to state that
deemed acceptance may only occur
after the product is used for a certain
period, rather than simply having been
delivered for a certain period.
Developers will often accept a
reasonable timeframe.

Formality

Whether or not the Software
Development Agreement provides for
such, the developed application should
be accepted formally in writing.
Similarly, any reservations should be
submitted in writing to the developer
with instructions as to how it appears
that the developed application falls
short and a time frame should be
negotiated for the rectification of the
defects. Issuing such notices will be
invaluable to the customer if the matter
is ever disputed later down the track.

From a developer’s perspective, these
notices are just as important. During
the testing and acceptance phase,
documenting the communications
between the parties may be a strong
tool to not only record matters as they
actually transpired but also to work out
resolutions to any issues that arise.

Retesting

It is important to repeat testing if the
developed application is modified
based on concems/complaints at the
time of testing and acceptance. It may
be that the testing plan should also be
modified to increase the relevance of
the results, but neither party should
neglect the duty to re-test.

6 Computers & Law December 2004

Managing Software Development Agreements: A Practical Guide

Hybrid acceptance

If the defects are minor or merely
cosmetic, a conditional acceptance
may be provided with a timetable to
complete the residual tasks, as long as
a viable work-around has been
delivered.

W arran ty Periods

It is a fair requirement that the
warranty period extend, at least, until
what would have been the period for
deemed acceptance (if the customer
hac not formally accepted the
deAeloped application). It is helpful to
know that even if the application
tec.inically passes testing and is
accepted, other defects that were not
foreseen may still be covered under a
warranty provision.

Fundam ental F ailure

De/elopers should be very thorough
with their testing. The recent case of
Unisys Australia Ltd v RACV
Insurance Pty Ltd & Anor [2004]
VS2A 81 (14 May 2004) (discussed
bebw) demonstrates that even an
“accepted” product can be the subject
of litigation against the IT provider.
Notwithstanding that a product has
been accepted, a fundamental failure to
meet the customer’s requirements may
still be considered by the courts.

Im plem entation

Similar to the discussion in relation to
seeping, implementation of a
developed application can be either
tacced on as a phase of the total project
or conducted under a separate
agieement.

Gi'en that many projects fail for poor
implementation and transition, it is
often in the interests of both the
customer and the developer that a
conpetent developer project manage
the implementation. This assures the
curtomer that a knowledgeable
professional is rolling out the
developed application and the
developer can reduce exposure to a
disgruntled customer suing the
developer if the customer conducts a
sutstandard implementation.

P n je c t and R isk M anagem ent

P nctices

If he developer is tasked with rolling

out the developed application, both
parties should ensure that sound
project and risk management tools and
processes are deployed and the
customer should seek a warranty that
the developer’s staff are sufficiently
experienced and trained.

Licensing T h ird P a rty Softw are

If the application relies on any other
software such as third party software, it
is important to ensure that the
appropriate licenses have been
arranged by this stage. This is
important for both parties, given the
risk of software infringement and
piracy claims.

A matrix of responsibilities is often
helpful. Sometimes a developer may
have access to competitive rates for the
relevant licenses. However, on
occasion the customer may already
have a strategic relationship with a
software vendor for the same product.
In any event, the responsibility for the
licensing of third party software should
be clearly spelt out in the Software
Development Agreement and the
deadline for attending to this issue
should be well before implementation
of the developed application.

On-Going Services

One of the most important questions,
post-implementation, is that of on
going support and maintenance. If the
parties intend for the developed
application to be supported by the
developer then they should (either as a
module to the Software Development
Agreement or by separate agreement)
enter into a support and maintenance
agreement.

S upport and M aintenance

The Software Development Agreement
should specify whether or not
maintenance will be provided. That is,
what regular servicing, updates and
upgrades, patches and modules will be
provided and whether such
maintenance will be pre-emptive
and/or remedial.

Another option which may be
delivered, in tandem with maintenance,
is on-going support through a help
desk with a dedicated hotline and
response methods that are suited to the
needs of the customer. Alternatively,

the developer could offer a facility
(often described as “no support”)
where support is provided on a
reasonable efforts basis during
business hours only at the developer’s
standard hourly rate. This option may
be preferred if the developed
application is considered very easy to
maintain or, in other words, it is very
stable.

Service Level A greem ent (SLA)

If the developer does support the
developed application the customer
should consider requesting a service
level agreement from the developer to
ensure that its support needs are met.
The developer also benefits from an
SLA because the developer can
exclude support in unreasonable
circumstances, cap the obligation to
support at achievable levels and
manage customer expectations.

Code Updates

If the developed application is
supported by the developer, the
customer should request that the
developer regularly consolidate and
update a separate back-up copy of the
code that the customer holds. This is
also helpful if the customer ever needs
to seek support from a third party.

Alternatively, if the application is only
licensed to the customer, the parties
may agree to leave a copy of the code
(which is updated from time to time) in
escrow with an agent on standard
escrow agreement terms.

F u tu re developm ent

A Software Development Agreement
should also address the customer’s
requirements for additional
development services. However, these
could also be included as variations to
the scope or, once again, as additional
phases or even separate agreements.

Unisys A ustralia L td v RACV

Insurance Pty L td & A nor

[2004] VSCA 81 (1 4 M ay

2 0 0 4)

In March 1993, RACV issued a
Request for Information (RFI) for the
development of a real time/near-line
storage system. Unisys, having
demonstrated relevant solutions to
RACV, delivered various documents

Computers & Law December 2004 7

Managing Software Development Agreements: A Practical Guide

as well as a formal response to the RFI.
The parties signed a contract in
December 1993 that did not refer to the
RFI or the other documents provided
by Unisys. The executed contract
included the usual exclusions and
liability limitations.

Two years later, in March 1995,
Unisys delivered a system that did not
meet RACV’s expectations for
response times and document
availability. According to the RACV,
the project had failed. While RACV
afforded Unisys an opportunity to
rectify, the system still did not meet
RACV’s expectations and in June 1996
RACV finally terminated the contract
and sought damages from Unisys.

The Basis of the Claim

RACV’s main claim was that Unisys
had breached section 52 of the Trade
Practices Act by engaging in
misleading and deceptive conduct in
trade or commerce.

The Court at first instance held that
Unisys knew of RACV’s requirements
for a system with rapid response times
and that RACV would not have
appointed Unisys if they did not
believe that RACV would be receiving
such a system from Unisys. The Court
held that Unisys had represented that it
would be able to deliver a system
which met RACV’s response time and
other requirements, this representation
had not been met and therefore Unisys
was liable.

The matter was appealed to the Court
of Appeal of the Victorian Supreme
Court and Phillips J, who rejected the
appeal and was supported by Batt and
Ormiston JJ, quoted the trial judge as
follows:

"The fa c t is, I find, that a
fundamental premise o f the
engagement, understood by Unisys,
was that the system implemented
would provide retrieval in a timely
manner. So much was obvious as
required to meet the business
purposes o f TACK But over and
above that was the requirement o f
an on-line system in which the
retrieval times specified in the RFP
were inherent. This was understood
by Unisys and hence the
explanations and representations o f
Josephson and Unisys' cognisance

o f the importance o f retrieval time
signified by the above references. I
reject the submission that under the
contract Unisys was to deliver, and
RACV was to accept, a system with
whatever retrieval times it might
come to deliver."

Defences

The initial response of Unisys to the
RFI stated that further investigation
was required before the solution could
be properly scoped. This is a common
device used to give the supplier room
to move. The Court held that this was a
general statement which could not
override Unisys’ specific promise
about delivering a system which would
perform.

Unisys also argued that it had
disclaimed response times in its RFI,
some 70 or so pages after its
impressive statements about what it
would deliver. The judge was
unimpressed with this hidden
disclaimer indicating that this, in itself,
could be seen to be misleading. In any
event, he found that in the face of
Unisys’ earlier statements in the
document about meeting RACV’s
requirements, the disclaimer could not
be read as meaning what Unisys
contended that it meant.

Unisys pointed to the written contract
and said that nowhere was the response
time requirement specified. Unisys
argued that the contract superseded the
earlier discussions by its express terms
and RACV could not rely on the earlier
documents. The Court held that the
contract was not effective to exclude
the operation of section 52 of the Trade
Practices Act and that Unisys remained
fully liable for its earlier unfulfilled
promises. There appears to be no neat
contractual band-aid solution for
earlier promises made to secure the
project.

Finally, Unisys claimed that under the
signed contract it had committed to
building a system based on a particular
functional specification which did not
cover response times. RACV argued
that Unisys had committed to build a
system which was fit for RACV’s
purposes. The Court held that the only
way to make sense of the functional
specification was to look back to the
RFI. The Court therefore rejected
Unisys’ argument on this point.

Conclusions

There are a number of practical lessons
that software developers and customers
can learn from the decision in RACV v
Unisys, which are briefly noted below:

Developers

(a) Avoid vast and un-costed pre-
contractual promises that cannot
be fulfilled. The existence of a
clever contract will not
necessarily save a developer from
the consequences of breaching
section 52 of the Trade Practices
Act.

(b) Ensure that disclaimers and
assumptions are clear and are
positioned near the statements
they are designed to limit. Courts
may frown upon “hidden”
limitations and disclaimers.

(c) Always involve your business
assurance managers, technical
stakeholders and lines of service
when bidding for a project to
ensure that your promises may be
delivered with certainty.

(d) Actively control the customer’s
expectations at all times. This is
also part of sound project
management.

(e) Ensure that change control is
properly conducted and explain to
the customer how change may
impact the projects objectives and
the attainment of the customer’s
requirements.

Customers

(a) As previously discussed, do not
cut corners by not documenting
your requirements. Make sure this
is done in the most accurate and
precise fashion that is feasible.

(b) Conduct due diligence on your
developer and bear in mind that
most demonstrations are not in a
live environment and do not deal
with real data and systems.

(c) Closely examine all assumptions
of the developer, the
responsibilities that have been
delegated to you, the constraints
and any documented processes
regarding how these are dealt
with if they fail. These provisions
will often mask disclaimers.

(d) Make sure the contract reflects

8 Computers & Law December 2004

Managing Software Development Agreements: A Practical Guide
both the agreement negotiated as
well as the ancillary promises and
any expectations that the
developer has lead you to hold
during negotiations or in a
response to a tender request etc.

(e) If possible, break the
implementation into milestones
so that damage control can be
used early rather than waiting for
a fundamental failure to arise.

(f) No matter how large or small the
development, plan and document
it well. The smallest project can
carry the same amount of risk as
the largest if it becomes the
weakest link in your IT systems.

Ateco A utom otive Pty L td v

Business Bytes Pty L td &

Anor; Business Bytes Pty Ltd

& A nor v Ateco A utom otive

Pty L td [2003] NSW SC 197

Ateco Automotive Pty Ltd (“Ateco”)
distributes cars, their parts and
machinery throughout Australia and
offers warehousing facilities to other
automotive companies. Ateco had
implemented an inventory
management system as its profitability
relied on efficient inventory control.

Having been supported on an ad hoc
basis by Mr Maurice Villari for around
8 years, Ateco appointed Mr Villari's
company, Business Bytes Pty Ltd
(“Business Bytes”), to provide regular
services as well as technical support
for Ateco’s computer systems in 1993.

The agreement for the services was
formed by correspondence and various
conversations exchanged over the

period of a few years.

Project management was poor and,
more critically, no clear statement of
requirements was provided and
Ateco’s staff were rarely available to
be trained on systems.

While one of the core modules was
defective, the system delivered was
substantially effective and its
appropriateness was confirmed by an
expert. Ateco paid $724,000 to
Business Bytes as well as $155,613 to
third parties for that system. However,
due to Ateco’s dissatisfaction with the
system it decided to purchase an
alternative system from another vendor
for $967,355.

The Basis of the Claim

Ateco sued for breach of contract,
negligence and claimed under section
52 of the Trade Practices Act seeking a
refund of fees and Business Bytes
cross-claimed against Ateco for
$222,552 of outstanding fees.

The Decision and its Implications

The Court held, dismissing the claims
under the Trade Practices Act, that the
mere delivery of an imperfect system
did not mean that the contract failed
for want of consideration and that, had
Ateco been more cooperative, many of
the problems could have been avoided.
The Court ordered Ateco to pay the
outstanding fees.

This decision illustrates that the
Customer cannot reasonably expect the
developer to be responsible for every
aspect of the project without providing
reasonable cooperation and assistance.
The best approach to managing a

relationship is joint management,
particularly when the customer's
requirements are dynamic.

To Conclude

Managing IT contracts in general, and
Software Development Agreements in
particular, is all about being proactive.
The key is to know the agreement as
well as the transaction and ensure that
the two are consistent from bidding
and negotiation through to drafting and
implementation.

Potential conflict and disagreement are
better dealt with early, reasonably and
diligently rather than avoided until the
matter becomes a serious issue. Recent
cases demonstrate an increased
willingness of parties to IT agreements
to seek the assistance of the courts,
even in light of pre-existing lengthy
and fruitful business relationships. As
a result, good contract management is
now, more than ever, linked very
closely to good risk management. By
actively planning the relationship,
carefully drafting the agreement and
responsibly managing the contractual
processes, it is likely that a software
development will be successful for all
concerned.

This article is based on a paper
presented by Alec Christie at the
seminar “Drafting & Negotiating
LT.Contracts” conducted by Legalwise
Seminars in Sydney on 26 August
2004. "

* The assistance of Lirun London Rabinowitz,
Senior Associate of Middletons, in writing
this paper is gratefully acknowledged.

Computers & Law December 2004 9

