The Distributed Liability of Distributed Ledgers: Legal Risks of Blockchain

DIRK A. ZETZSCHE, ROSS P. BUCKLEY AND DOUGLAS W. ARNER

[2017] UNSWLRS 52

UNSW Law
UNSW Sydney NSW 2052 Australia

E: unswlrs@unsw.edu.au
W: http://www.law.unsw.edu.au/research/faculty-publications
The Distributed Liability of Distributed Ledgers:
Legal Risks of Blockchain

Dirk A. Zetzsche,* Ross P. Buckley** and Douglas W. Arner***

Abstract

The transformative potential of distributed ledger technology, especially in the financial sector, is attracting enormous interest. Many financial institutions are investing heavily in proof of concept demonstrations and the rollout of pilot applications of DLT technology. Part of the attraction of distributed ledger systems, such as Blockchain, lies in transcending law and regulation. From a technological perspective, DLT is generally seen as offering unbreakable security, immutability and unparalleled transparency, so law and regulation are seen as unnecessary. Yet while the law may be dull and the technology exciting, the impact of the law cannot be simply wished away. With data distributed among many ledgers, legal risk will remain. DLT projects may well be found, by courts, to constitute joint ventures with liability spread across all owners and operators of systems serving as distributed ledgers. Regulators seeking to support appropriate approaches to twenty-first century financial infrastructure must focus on these legal consequences.

Keywords: Bitcoin, Blockchain, Distributed Ledger Technology, Financial Infrastructure, FinTech, RegTech.

* Professor of Law, ADA Chair in Financial Law (Inclusive Finance), Faculty of Law, Economics and Finance, University of Luxembourg, and Director, Centre for Business and Corporate Law, Heinrich-Heine-University, Düsseldorf, Germany.
** Scientia Professor, King & Wood Mallesons Chair of International Financial Law, and Member, Centre for Law, Markets and Regulation, UNSW Sydney.
*** Kerry Holdings Professor in Law, University of Hong Kong.

The authors gratefully acknowledge the financial support of the following: the Luxembourg National Research Fund, project “A new lane for Fintechs – SMART Regulation”, INTER/MOBILITY/16/11406511; the Australian Research Council, project “Regulating a Revolution: A New Regulatory Model for Digital Finance”; and the Hong Kong Research Grants Council Theme-based Research Scheme, project “Enhancing Hong Kong’s Future as a Leading International Financial Centre”; and the research assistance of Katharine Kemp, Jessica Chapman, Tsany Ratna Dewi, Paul Friedrich and Cheng-Yun Tsang. The authors are grateful for comments and remarks provided by János Barberis, Iris Barsan, Isabelle Corbisiere, Scott Farrell, Holger Fleischer, Annabel Griffin, Rob Hanson, Alain Pietrancosta, Gerald Spindler, Erik P.M. Vermeulen, Markus Willms, as well as participants at conferences and workshops organized by IJRS Sorbonne-Paris I, the Max Planck Institute for Comparative and International Private Law, Humboldt University Berlin, Tilburg University, University of Luxembourg. All responsibility is the authors’.
I. Introduction

Over the past several years, interest in distributed ledger technology (DLT) such as blockchain has exploded.\(^1\) Regulators,\(^2\) consultants,\(^3\) technology firms\(^4\) and academia\(^5\) are promoting DLT for financial services. Blockchain technology has

\(^3\) It has been estimated that “distributed ledger technology could reduce banks' infrastructure costs attributable to cross-border payments, securities trading and regulatory compliance by between $15-20 billion per annum by 2022”: see Santander InnoVentures, OLIVER WYMAN AND ANTHEMIS GROUP, THE FINTECH 2.0 PAPER: REBOOTING FINANCIAL SERVICES (June, 2015), available at http://santanderinnoventures.com/fintech2/; WORLD ECONOMIC FORUM (WITH DELLOITE), THE FUTURE OF FINANCIAL INFRASTRUCTURE - AN AMBITIOUS LOOK AT HOW BLOCKCHAIN CAN RESHAPE FINANCIAL SERVICES (2016), available at www3.weforum.org/docs/WEF_The_future_of_financial_infrastructure.pdf.

moved beyond cryptocurrencies, like Bitcoin, and its application is now being considered for all parts of the financial system. Capital raising, trading, clearing and

8 See World Economic Forum (with Deloitte), supra note 3, at 83-91.

settlement,10 global payments,11 deposits and lending,12 property and casualty claims processing (InsurTech),13 digital identity management and authentication,14 and RegTech solutions15 (such as automated compliance, administration and risk management, and anti-money laundering and client suitability checks) have all been identified as significant potential DLT use cases, and as areas that will benefit from the advantages DLT offers. In many recent instances, use cases have now moved through the proof of concept stage to the pilot stage.

At the same time, legal concerns are emerging. The discussion so far has focused on investment fraud,16 the classification of crypto-currencies as securities, derivatives, commodities, currency or other assets,17 systemic risk regulation and central bank

10 See World Economic Forum (with Deloitte), supra note 3, at 119-128; Micheler & Heyde, supra note 5; Paech, supra note 5, at 612–639.

12 See World Economic Forum (with Deloitte), supra note 3, at 65-82, 119-119 (exploring the potential of Bitcoin for syndicated loans and trade finance as well as asset rehypothecation).

13 See World Economic Forum (with Deloitte), supra note 3, at 40, 56-64.

16 Derek A. Dion, I’ll Gladly Trade You Two Bits on Tuesday for a Byte Today: Bitcoin, Regulating Fraud in the E-Conomy of Hacker-Cash, U. ILL. J. L. TECH. & POL’Y 165, 167 (2013); Kiviat, supra note 1, 569.

functions\(^\text{18}\) as well as money laundering\(^\text{19}\) and taxation.\(^\text{20}\) We seek to add another, private law dimension which has received little attention.\(^\text{21}\)

In analysing legal and regulatory issues around DLT, the starting point is to identify the central characteristics of the technology and analyse this within existing legal and regulatory frameworks. In this foundational analysis, legal and regulatory issues must be considered in the specific context of individual use cases, proofs of concept and pilots. Of central importance is the potential of DLT as a trust solution.\(^\text{22}\) The trust enhancing function of multiple (‘distributed’) entities together providing authentication rather than one ‘centralized’ ledger is claimed to lead to (1) disintermediation of traditional intermediaries and clearing and settlement systems (resulting in greater security and transparency), (2) enhanced efficiency and speed, (3) lower transaction costs, and (4) enhanced market access.

This paper focuses upon the potential liability of DLT participants. This is because legal liability (if any) will simply not disappear with DLT, although it is often (from

our perspective over-enthusiastically23) wished away by those who promote and analyse the technology24 or praise its economic potential.25 This matters, as distributed ledgers are often hailed as the answer to ever-increasing cybersecurity risks. While distributed ledgers may well be more secure than traditional centralized ledgers, recent events call for an analysis of who will bear DLT losses and responsibility for damages in connection with a blockchain. Some notable examples26 include:

- A hack from 2011 until February 2014 resulted in losses of 750,000 customer Bitcoins and 100,000 Bitcoins owned by the Japanese Mt. Gox Bitcoin exchange, then the largest Bitcoin exchange in the world. The leading explanation is that this was a hot wallet hack relying on a transaction malleability bug.27 Mt. Gox subsequently declared bankruptcy, citing losses from the hack amounting to US$473 million at the time of filing.28

- In January 2015, Luxembourg- and London-based Bitstamp, by 2016 the second largest Bitcoin exchange in terms of volume traded, suffered from a hot wallet hack leading to the loss of 19,000 Bitcoins, valued at about US$5.1

24 Cf. Mélanie Dulong de Rosnay, \textit{Responsabilité}, 203-204, in \textsc{ABÉCÉDAIRE DES ARCHITECTURES DISTRIBUÉES} (Cécile Méadel & Francesca Musiani eds., 2015) (stating, without in-depth legal analysis, that distributed networks would be neither property nor contract nor otherwise legally governed); Mélanie Dulong de Rosnay, \textit{Peer-to-Peer as a Design Principle for Law: Distribute the Law}, 6 J. PEER PROD. 2 (2015), available at http://peerproduction.net/issues/issue-6-disruption-and-the-law/peer-reviewed-articles/peer-to-peer-as-a-design-principle-for-law-distribute-the-law/ (taking the position that law focuses on individual rights and arguing in favor of an expansion and adaptation of law to assign rights and obligations to communities rather than individuals). However, see Paech, supra note 17, at 23-24, 28 (stating that system issues render enforcement difficult, implying that legal claims are granted by the law, and demanding that “de facto acquisition on the basis of the operation of software needs to be recognised by private law itself” – without further details).

26 See also Murphy, Murphy & Seitzinger, supra note 7, at 8-9 (citing an additional five ‘smaller’ liability events in 2012 and 2013, including Bitcoin Savings and Trust’s insolvency (US$5.6 million in damages), the hacks of Bitfloor (US$250,000), Instawallet (US$4.6 million), and Australian Bitcoin Bank (more than US$1 million) and Bitcoin Foundation).

27 Doubts persist as to the technical reason for this loss. The fact that 200,000 Bitcoin were later found on a discarded hard drive was troubling. See \textit{The Troubling Holes in MtGox’s Account of How It Lost $600 Million in Bitcoins}, TECHNOLOGY REVIEW (April 4, 2014), https://www.technologyreview.com/s/526161/the-troubling-holes-in-mtgoxs-account-of-how-it-lost-600-million-in-bitcoins/ (last visited June 16, 2017).

million. Bitstamp subsequently suspended services for nearly a week during which client deposits were not accessible.29

- In 2016, US$33 million of the over US$150 million crowd funded assets in DLT-based virtual currency ETHER held in the investor-directed DLT-enabled Decentralized Autonomous Organization (DAO)30 were channelled to a third-party controlled account after exploiting previously published vulnerabilities31 in the DAO code.32 A White Hat or Robin Hood counter attack led to most of the lost Ether being recaptured.

- In 2016, Hong-Kong-based Bitfinex, one of the world’s largest bitcoin exchanges, lost 119,756 Bitcoins with a market value at the time of between US$66-72 million in a hack that involved its multi-signature accounts.33 It was decided to apportion losses from the theft across the company’s clients and assets, widening the group of those affected by the losses beyond those holding the multi-signature accounts that were hacked. Accordingly, all Bitfinex clients lost a significant 36% of their holdings.34

As these examples show, risk does not vanish if financial services are provided via distributed ledgers. With DLT, the data, and the risks, formerly concentrated in a centralized ledger are distributed across all participants (‘nodes’).

The analysis in this paper of the liabilities associated with DLT should serve regulators, globally, who are currently working to identify risks likely to arise from DLT, as well as market participants involved in DLT systems. In particular, the International Organization of Securities Commissions (IOSCO) is reported to be “working to identify risks to business models from digital disruption like the blockchain”,35 with European regulator ESMA (the European Securities and Markets

30 The DAO is associated with a Swiss company, but its main actors are German. For an overview of the DAO’s architecture, see Vlad Zamfir & Emin Gün Sirer, A Call for a Temporary Moratorium, 4-7 (Revised draft report, May 30, 2016), available at https://docs.google.com/document/d/10kTyCmGPhvZy94F7VWyS-dQ4lsBacR2dUgGTrV98C40/edit#heading=h.exdzp88avpn4 (last visited July 15, 2017).

Authority)36 and other IOSCO members entering into large scale fact gathering and analysis. In a similar vein, the Financial Stability Board has started to look into risks and vulnerabilities created by Blockchain.37

This paper is structured as follows. Part II considers the move from concentrated to distributed ledgers and analyses the underlying features of DLT which make it so potentially attractive to financial services, in particular its security, and its related characteristics of transparency and immutability.

Part III reveals that joint control is the pre-eminent feature of distributed ledgers, regardless of whether the system is permissioned or permissionless. Part III also outlines the legal consequences of joint control, demonstrating that regardless of whether considered from the standpoint of the law of torts, contracts or partnership/company law, joint control potentially results in joint liability. We further show that joint control impacts the legal consequences of the three most likely risk sources in a blockchain which include (1) failures at the level of the node, (2) failures at the level of client/user, and (3) unintended third party access (cyber attack).

Part IV ponders the consequences for regulated intermediaries and regulatory systems that seek to participate in distributed ledger systems. Institutions need to consider carefully the legal design of any such system. If a distributed ledger links multiple legal entities, all entities in the system need to consider contingent liability risk, including putting risk and compliance management systems in place and holding appropriate levels of risk capital (and/or providing for meaningful insurance coverage). While some may believe that from a technology perspective distributed ledgers may be difficult to set up38 and easier to handle long-term, from a legal perspective the opposite may be true: they are easy to set up but come with ongoing longterm legal consequences. From a pure risk perspective concentrating precautionary measures and liability in one entity (a joint venture) that holds the legal title in multiple ledgers could turn out to be the best solution. While this concentrated design works well among the subsidiaries of one financial conglomerate, it is doubtful that independent financial institutions will be willing to give up control over their clients’ data in this way.

Part V concludes by considering these options.

36 See ESMA, supra note 2.

37 See Press Release, Meeting of the Financial Stability Board in Tokyo on 30-31 March 2016, available at http://www.fsb.org/2016/03/meeting-of-the-financial-stability-board-in-tokyo-on-30-31-march/ (last accessed July 7, 2017) (“The Plenary reviewed major areas of financial technology innovation, including distributed ledger technology, and proposed a framework for categorising them and assessing any financial stability implications. Plenary members discussed the issues raised for public authorities by these technologies, possible steps to address potential risks, and opportunities for cooperation in the FSB and with the standard-setting bodies to deepen analysis and develop regulatory perspectives”).

38 While traditional setup takes time, effort and resources Blockchain-as-a-Service (BAAS) providers such as IBM (“IBM Blockchain”), Microsoft (“Azure”) and Intel enable the setup of a full-meshed network in less than an hour.
II. Features of Distributed Ledger Technology

A. The Ledger Concept

The modus operandi of distributed ledgers is best understood by looking at their counterpart, the centralized ledger. Centralized ledgers are the most common data storage device in finance today. In a centralized ledger, data are stored on the ledger, and the trusted administrator of the ledger maintains it, recording transfers of assets and the like upon receipt of appropriately verified notifications. Risks exist. The ledger could be destroyed, or more likely, hacked or otherwise compromised, so that the original data are held for ransom or manipulated and replaced by new (inaccurate) data. Mathematical approaches can be used to define how much effort is necessary to manipulate any given server. As such every single server can be manipulated with sufficient computing power.39

Figure 1:

Source: Paul Baran, On Distributed Communication Networks, 196240

40 Baran’s diagram for distributed ledgers is now inaccurate. In modern distributed ledgers, in principle, all nodes are connected and communicate with each other.
Distributed ledgers address these problems by raising the barriers for manipulation of stored data. Rather than relying on the hub-and-spokes model of centralized ledgers, or the hubs and spokes of decentralized ledgers, in distributed ledgers many data storage points (nodes) are all connected with each other and store all data simultaneously, and together constitute the common ledger. DLT requires consensus of those nodes rather than just the confirmation by one hierarchically structured storage device, as with a centralized ledger. The technical details of how to achieve consensus vary – technology allows for instance for proof-of-work concepts,41 or proof-of-stake concepts – and the technology adopted defines how the consensus mechanism can be gamed. Regardless, data stored on a distributed ledger is less likely to be manipulated in any given case as compared to data stored on one equally secure server.

Assume there are N nodes (rather than one centralized ledger) and E describes the effort necessary to break into any single server. Given that all other conditions (security of each server etc.) are equal,42 we would expect the efforts necessary to manipulate all servers linked in the ledger to be $N \times E$ rather than $1 \times E$. The number of servers that will need to be manipulated to manipulate the outcome will depend on the number of servers necessary for consensus and the number of nodes involved. If $N > 1$ the distributed ledger is more secure than the concentrated one.

‘Blockchain’ refers to how data are stored on the ledger. Rather than being stored individually, data are stored in a block bundled with other data. The block serves as the container of multiple data points, and all blocks are stored in a specific order (the ‘chain’). Each block contains a timestamp and a link to the previous block. Rather than manipulating one point alone, the bundling of multiple datasets in one block requires a cyber attack to manipulate the whole block of data as well as – due to the time stamp and link – the blocks before and after the attacked block.

B. Permissioned vs Permissionless DLTs

DLT can take various forms. In particular, DLT systems can be permissioned or permissionless. Permissioned systems are essentially private networks where data authorization depends upon the agreement of multiple pre-defined servers. Permissioned systems require an organization and governance structure regulating at least who is permitted to participate and usually the basis upon which they will participate. For instance, DLT-based peer-to-peer digital payment network Ripple

41 In a proof-of-work system, multiple servers (‘nodes’) all try to solve one mathematical problem. Solving the problem requires data processing capacity and energy. The first node to solve the problem is compensated, while all others use the solution provided by the first node to ensure that the problem is correctly solved; thereby the solution to the mathematical problem assumes the function of a unique, one-time-use code.

42 In practice, nodes of a distributed system do not typically have the same level of security as concentrated systems: 1) a chain is only as strong as its weakest link (most of the times the endpoint and the human controlling it); 2) even if the DLT as “supra layer” is secure, the “underlying layer” may be less strong, and both pose risks to DLT security; 3) a distributed system is much more difficult to restore than a central system. If a central system is hacked and the date/time can be determined, running the ledger on a backup could effectively counter the hacker attack (as long as the backup has not been compromised). In a distributed system, due to governance issues once compromised there are no easy ways to restore the data chain. Altogether this undermines DLT security. \textit{See infra}, at III.A.
utilizes a network of trusted parties (‘validation’ nodes) that constantly compare their transaction records.\footnote{For a brief overview on Ripple’s technology, see Vitalik Buterin, \textit{Introducing Ripple - A Detailed Look at Cryptocurrency’s New Kid on the Block}, 8 BITCOIN MAG (2013) (the technology underlying Ripple is able to integrate established financial intermediaries which may explain Ripple’s current success); see also Diana Ngo, \textit{Banks Unite Around Ripple to Launch Blockchain-Based Cross-Border Wiring Service}, COIN JOURNAL (April 3, 2017), https://coinqinjournal.net/banks-unite-around-ripple-launch-new-cross-border-wiring-service/ (last accessed June 16, 2017).}

In contrast, permissionless blockchains such as Bitcoin operate on public domain software and allow anyone who downloads and runs the software to participate. In some cases even the code is further developed in the public domain. The participants in those distributed ledgers may not know who else is running a server functioning as a node at any given time. There is an additional security element in the unknown inherent in this structure: if the number of overall nodes is known a cyberattack may be planned with greater certainty given that the maximum number of nodes is certain.\footnote{IT experts refer to this strategy as “security through obscurity”}. If nodes come and go depending on participants, efforts focused on certain nodes may prove fruitless if those nodes have stopped operations, or are in excess of the number needed for consensus. The number of nodes required for a consensus is set in the code underlying the system and is thus a fundamental aspect of the design of any system. This also provides one of the major known vulnerabilities in many blockchain systems, including Bitcoin.

\section*{C. Storage Trust Issue Solved}

The solution to the storage trust issue leads to efficiency gains wherever storage trust is of the essence. Since most financial intermediation is based on trust – clients give their financial or other resources to someone else – enhancing trust in storage could reduce risk premiums resulting from a lack of trust.

However, the trust that the ledger is maintained and thus the data retrievable (similar to a book copy that is stored in the archives) depends on the system’s design. All systems face the risk of “invalidity through obsolescence and boredom”\footnote{DuPont & Maurer, \textit{supra} note 5.}: Without a community of nodes running the protocol and verifying transactions the system stops working. If all members have moved to a new system all data stored on the blockchain cease to exist. DLs pay nodes directly or indirectly for running the protocol. For instance, Bitcoin maintains incentives with ‘mining’: “by assigning parts of the ledger to miners who, competing with each other, win the proof-of-work lottery. Incentivization is critical to ensure that miners do not grow bored and stop mining, thereby failing to provide the essential verification mechanism.”\footnote{\textit{Id.}}

\section*{D. Examples}

There are multiple fields where DLT may have great potential. One of the most widely discussed applications of storage trust relates to \textbf{clearing and settlement}. Generally, a central securities depositary functions as a centralized ledger which

\addcontentsline{toc}{section}{References}
records all transactions and changes in ownership. All custodians and depositaries are linked to the CSD, and clearing and settlement costs are defined by the CSD’s charges. With DLT, the centralized ledger could be replaced by a distributed network of certain core depositaries holding together the various securities. This proposition would become more powerful in combination with smart contracts leading to automatic execution.

Another potential use for DLT includes fields where proprietary access to data creates or enhances a dominant position in a market. With DLT, data access is mutualized. This may create both opportunities and difficulties. If we envision an AML/KYC hub being maintained for a financial centre like Hong Kong or Luxembourg, no entity would consent to its competitor holding its client data. A DLT system may enable a compromise in that all entities simultaneously hold all client data and could therefore benefit greatly from scale economies resulting from, for instance, AML/KYC checks needing to only be undertaken once. At the same time, given the sensitivity of data, financial institutions would insist on the most secure technology. DLT could simultaneously address the governance and storage trust issues associated with a centralized AML/KYC hub.47

III. DLT and the Risks of Distributed Liability

DLT addresses the storage trust issue. DLT ensures the validity of datasets by spreading data over many nodes which have to agree, via the previously determined consensus mechanism, to confirm data validity. DLT can ensure better than other technologies that data are not manipulated while stored. DLT can also ensure that the party making a transfer has title on the ledger to the asset being transferred, and is not able to transfer it twice to separate buyers. However, beyond these inbuilt protections, DLT does not make inaccurate data accurate. Inaccurate data stored via DLT remains inaccurate. The ‘garbage in, garbage out’ dilemma holds.48

The important point here is that while DLT may enhance data security, it is not bullet proof. DLT has certain characteristics which could result in undesirable data distribution, data loss or data manipulation. All of these lead to questions about responsibility and liability, issues considered in this section.

A. Liability Risks Associated with DLT

DLT commonly gives rise to at least three major types of potential liability risk: ledger transparency risks, cyber risks and operational risks.

47 DLT could be beneficial regardless of which data can be accessed by users of the AML/KYC hub. Access to data may be organized differently than storage. For instance, financial institutions that rely on the client data stored via the ledger may receive only a green/yellow/red light, while their underlying server infrastructure achieves consensus on the data that provide the basis for the AML/KYC assessment.

48 This facilitates abuse as the dividing line between true and false information is blurred. See Gruber, supra note 20, at 135 (citing the case where an anonymous person threatened to disclose former presidential candidate Mitt Romney’s tax returns unless he was paid a certain amount; it was uncertain whether the tax data was accurate).
1. Risks from Increased Ledger Transparency

DLT stores data by spreading them over multiple nodes. Every node operator has access to the data stored on the ledger.\(^49\) While a certain level of transparency is a precondition for the enhanced level of trust that DLT creates, the enhanced level of transparency could enable re-personalization of data stored on the distributed ledger, or enable nodes to make an informed guess as to identities entering into certain transactions. Two main legal risks derive from this enhanced level of transparency, one relating to data privacy and another to insider trading and market abuse.

Violation of Data Privacy

The transparency characteristics of distributed ledgers and data privacy are in tension. For instance, Bitcoin reveals considerable information about users’ profiles, enabling re-personalization of pseudonymous data.\(^50\) Indeed spreading data over multiple nodes may facilitate access to private data sets.\(^51\) Distribution of private data over the ledger could violate data protection laws. In some jurisdictions, penalties for violation of

\(^{49}\) For instance, in Bitcoin, all the data is on the blockchain except the identity of the owners. To know that, one requires the private key. The private key is stored on the owner’s wallet rather than the ledger. “However, anyone can see who owns each block, via its public header information, and can follow the links through the entire chain right back to the first block.” Cf. Jude Umeh, *Blockchain Double Bubble or Double Trouble?*, 58:1 ITNOW 58 (2016).

\(^{50}\) Elli Androulaki et al., *Evaluating User Privacy in Bitcoin*, FIN. CRYPTOGRAPHY & DATA SECURITY (2013), available at http://eprint.iacr.org/2012/596.pdf. See also Micha Ober, Stefan Katzenbeisser, and Kay Hamacher, *Structure and Anonymity of the Bitcoin Transaction Graph*, 5 FUTURE INTERNET 237 (2013) (stating that according to Bitcoin protocol, “the balance associated with an address cannot be divided into smaller amounts. Nevertheless it is possible to use the same input address again as output address; this way only a fraction of the balance can be transferred to another address, whereas the remainder of a balance can be transferred back to the originator. This has, of course, negative implications on privacy: it allows to link different transactions, as an attacker can more accurately estimate the number of active entities (if there was no linkability, the new transaction would look as if it originated from a new entity).” The authors also mention that, in order to maximize both the anonymity set of Bitcoin and the unlinkability of transactions, “an entity that is observable by an adversary by inspecting the Bitcoin block chain should be as small as possible (best case: single address, increasing the anonymity set) and only active for a short time (best case: single transaction, limiting transaction linkability). There can be numerous reasons why this is not achievable in practice. First of all, addresses belonging to known public entities like mining pools are of course active for a very long time and it would not be of much use to obfuscate those addresses. On the other hand, a user mining on a pool with the same payout address all the time or some entity accepting donations on a single address will weaken the privacy of those entities. Even though the Satoshi Bitcoin client generates a new address for remaining change—which which again allows a connection between the addresses to be made’); Fergal Reid & Martin Harrigan, *An Analysis of Anonymity in the Bitcoin System*, 197–223, in SECURITY AND PRIVACY IN SOCIAL NETWORKS (Yaniv Alshuler, ed., 2013) (tracking the flow of Bitcoin transactions in a small part of a Bitcoin log). See also Matthew Elias, *Bitcoin: Tempering the Digital Ring of Gyges or Implausible Pecuniary Privacy* (Oct. 3, 2011), available at https://ssrn.com/abstract=1937769 (stating that Bitcoin's system architecture is analogous to that of the internet so the level of anonymity is similar to that on the internet, but finding that “anonymity on the internet is a function of one’s technical knowledge and ability, and of the amount of resources one is able to dedicate towards that end”).

data protection rules are severe.52 Entities using DLT will need to consider and address their data privacy obligations carefully and rigorously.

Another interference with privacy rights stems from the fact that data once stored on the ledger cannot be erased: this is the immutability feature of DLT. This may have devastating consequences to an individual or entity. For instance, assume that inaccurate data on the credit worthiness of a person or illicit pictures of children and young adults are spread over the ledger. This is at odds with the ‘right to be forgotten’ granted in some jurisdictions, so victims will turn to damages instead. More significantly, this is directly at odds with the requirements of law that in some circumstances transactions are void, and title must be rectified to reflect this, for instance in the context of fraudulent transfers. Immutability and the requirements of law will clash.

Insider Trading and Market Abuse

If DLT is used to store sensitive, valuable information it may facilitate a range of financial abuses including insider trading, tipping and market manipulation. ESMA is concerned that the

> shared and public features of DLT could facilitate market manipulation and other unfair practices. In the absence of proper safeguards, some could unduly exploit the information recorded in DLT, e.g., recent trades or inventories levels of other participants, to front-run competitors or manipulate prices.53

While civil and criminal penalties for insider trading and market abuse are severe,54 responsible entities may also face civil litigation in certain cases. Again users of DLT will have to guard scrupulously against this abuse of the information on the system. This highlights another set of potential risks of the transparency characteristic of DLT.

Identity Theft

While transparency is beneficial to data integrity it also facilitates access to assets through identity theft. In particular, if only the private key is required to divert assets and no central ledger authority is able to block access upon notice of loss, the private key itself becomes the target of illicit activities.55

52 For instance, under the European Data Protection Regulation that has come into force in May 2017, regulators may impose penalties of up to 4 percent of a firm’s turnover. See ESMA, supra note 2, at 11, ¶42 (“ESMA realizes that the use of DLT could in some cases raise privacy risks in relation to client data”).

53 See id., at 11, ¶38.

54 See 15 U.S. Code § 78u–1 (Civil penalties for insider trading), allowing the court to impose penalties three times the profit gained or loss avoided. Under European law the penalties are even more severe, amounting to up to either 15% of the entity’s turnover for insider dealing, unlawful disclosure and market manipulation, or €15 million, whatever is higher. See Market Abuse Regulation (EU) No 596/2014 Art 30(2).

55 Jennifer J. Xu, *Are Blockchains Immune to All Malicious Attacks?*, 2:25 FIN. INNOV. 6 (2016).
2. Cyber risks

Tampering with Data prior to Storage

Second, DLT does not solve the general issue of data processing: inaccurate data remains inaccurate how ever it is stored. For instance, if data from a financial transaction are stored on a distributed ledger, the data will often be generated by just two entities, buyer and seller. Attacking the (weak) input link rather than the distributed ledger itself will lead to inaccurate data being distributed. If a cyber attack focuses on the transacting parties rather than the storage device (DLT), users relying on the ledger may not realize the inaccuracies and rely upon it. Permissionless distributed ledgerss are particularly exposed due to non-existing user/client enrolment/identity processes. With Bitcoin the weakest link is the Bitcoin owner’s wallet,\(^{56}\) i.e. the device in which the owner’s value is booked and is exclusively held by the owner similar to a bearer instrument. For instance, in the Mt. Gox case attacks were directed towards the weak input link rather than the ledger itself.

Brute Force Attack and Cheats

Even in what DLT is best at – safe storage – a distributed ledger has its limits. In particular, rules on how proof-of-work concepts determine consensus may reduce the reliability of the technology. For instance, in the blockchain that underlies Bitcoin just five nodes together process approximately 85% of all mathematical problems, i.e. mining of coins.\(^{57}\) The ledger is partly recentralized. If one attacks nodes that cover the required consensus level, then the chain could be compromised.\(^{58}\) At the same time, in proof-of-stake systems there is a central storage or processing device on which the stakes are calculated which could be targeted, thus in a permissioned blockchain a cyberattack could target the devices determining the governance of the blockchain (i.e. the vote calculator), etc.\(^{59}\) These are examples of a distributed ledger being broken by brute force, i.e. bundling computing power to attack multiple nodes simultaneously.\(^{60}\) Since this requires an enormous amount of computing power – in theory, a Bitcoin attacker needs at least 51% more computing power than the network

\(^{58}\) For instance, if a cyber attack targets the five most important nodes it has a high probability of hitting the node solving the particular mathematical problem. Given that impact on consensus is based on data processing volume in the blockchain, it could influence the results, as a result would have the support from 85% of the distributed ledger could influence the results since a result would have the support from 85% of the distributed ledger.

\(^{59}\) David Yermack, Corporate Governance and Blockchains, 21 REVIEW OF FINANCE 7 (2017).

\(^{60}\) See Umeh, supra note 49, at 61 (stating that "although not totally impossible, such a hack is non-trivial, computationally prohibited activity to executive over a large distributed peer network"). Umeh assumes the presence of private participants, while the reality may include state-coordinated groups of attackers with resources unlimited by economic constraints. See Angela Walsh, The Bitcoin Blockchain as Financial Market Infrastructure: A Consideration of Operational Risk, 18 N.Y.U. J. LEGIS. & PUB. POL’Y 837, 859-865 (2015); ANDREAS M. ANTONOPOULOS, MASTERING BITCOIN: UNLOCKING DIGITAL CRYPTOCURRENCIES 213 (2014).
already encompasses an attack may be more successful that ‘convinces’ the necessary number of nodes (or cheats those nodes) to adopt an updated version of the ledger software through which the desired change is implemented. In fact, if all attacked nodes are of the same level of security as a centralized ledger, a brute force attack will require very significant effort from the attacker if all nodes are equally important and safe. Yet both conditions are unlikely to be true.

First, as was shown above, transaction logic will lead to concentration among the nodes making some more important than others. For instance, in some virtual currency blockchains, nodes are compensated per transaction they complete, thus providing incentives to compete for transactions. Some of the most active nodes will process a high proportion of transactions leading to a concentration of data generation on those nodes. If consensus building is capacity oriented, as in some blockchains including Bitcoin, the attack must only result in control over more computing power than is retained by honest nodes, an instance referred to as ‘51% attack.’ Thus, a cyber attack that focuses on the handful or so of nodes in which most transactions are concentrated, is more likely to be successful.

Second, some nodes will be safer than others, given that some owners will invest more in cybersecurity than others. It is safe to assume that the majority of nodes managed by non-professional institutions will be less secure than the cyber fortresses typical of important centralized ledgers. Rather than attacking all nodes in a distributed ledger where consensus is built, attacking the nodes with weaker security may be productive with less effort than that required for a brute force attack on all

61 See Satoshi Nakamoto (a pseudonym for Bitcoin’s funder, or funding group of developers), Bitcoin: A Peer-to-Peer Electronic Cash System 1, BITCOIN, https://bitcoin.org/bitcoin.pdf (last visited June 30, 2017) (stating that “the system is secure as long as honest nodes collectively control more CPU power than any cooperating group of attacker nodes”).

62 For instance, modification of the Bitcoin blockchain requires a majority of nodes to consent to the change. The fact that ledger software is complex and few node owners are computer literate facilitates a cheat based on misinterpretation of the code, see Walch, supra note 60, at 867-868; Christopher, supra note 7, at 173-174.

63 Joshua A. Kroll, Ian C. Davey & Edward W. Felten, The Economics of Bitcoin Mining, or Bitcoin in the Presence of Adversaries, 11-13, in THE TWELFTH WORKSHOP ON THE ECONOMICS OF INFORMATION SECURITY (2013); Santiago Pontiroli, Well, That Escalated Quickly: From Penny-Stealing Malware To Multi-Million-Dollar Heists, A Quick Overview Of The Bitcoin Bonanza in the Digital Era, VIRUS BULLETIN CONFERENCE SEPTEMBER 2014; Kevin D. Werbach, Trustless Trust, 61-64 (Working Paper, Aug. 14, 2016); Arthur Gervais, et al., Is Bitcoin a Decentralized Currency?, 3 IEEE SECURITY & PRIVACY 12, 54-60 (2014) (stating that while “[g]overnments and banks control almost every financial system; Bitcoin substitutes these powerful entities with other entities, such as IT developers and mining pool owners. … In this sense, Bitcoin now finds itself in unfamiliar territory: on one hand, the Bitcoin ecosystem is far from being decentralized; on the other, the system’s increasing centralization doesn’t abide by any transparent regulations or legislations”).

64 Cf. Nakamoto, supra note 61, at 1.

65 Cf. Walch, supra note 60, at 861 (citing Bitcoin proponent Antonopoulos, supra note 60, at 211-212).

nodes simultaneously. These attacks promise better results when the attackers have access to advanced cryptoanalysis and the nodes’ encryption has lower standards.67

Double Spending and Distributed Denial of Service Attacks

Further potential liability events have been discussed in the information technology literature. These include double spending attacks where the same currency unit is simultaneously assigned to two different users so that both can spend the same coin at the same time.68 This disincentive is unlikely to stop attackers seeking to destroy the Bitcoin system “as a form of terrorism”,69 or merely harm its users.70

Another potential threat stems from distributed denial of service attacks (DDOS). Again, DDOS is the more dangerous the more concentrated the ledger. For instance, in the Bitcoin ledger where a handful of mining pools control by far the most computing power, DDOS could bring, and have frequently brought,71 mining to a halt, interfering with the core system of predictable new Bitcoin creation. The more DLT is widely spread in the business sector the more likely it is that some rogue or terrorist may turn to DDOS. Even if immediately detected due to intense monitoring the effects are potentially severe. For instance, in the case of Bitcoin the BTC exchanges do closely monitor every move of every BTC made. In the case of detection, all exchanges will cease operations, and the value of BTC is likely to drop. As long as the operational deficiency prevails it would be extremely difficult to move the BTC from virtual currency to fiat currency. Clients whose assets were frozen will ask for reimbursement of their costs.

68 Cf. Nakamoto, supra note 61, at 7; Ghassan O. Karam and Elli Androulaki, Two Bitcoins at the Price of One? Double-Spending Attacks on Fast Payments in Bitcoin (Conference on Computer and Communication Security, 2012), available at http://eprint.iacr.org/2012/248.pdf (demonstrating that double-spending attacks on fast payments can be mounted at low cost on the then-deployed versions of Bitcoin and that “the measures recommended by Bitcoin developers for the use of Bitcoin in fast transactions are not always effective in resisting double-spending” and proposing countermeasures that enable the detection of double-spending attacks in fast transactions); Antonopoulos, supra note 60, at 211-212.

69 Jörg Becker, et al., Can We Afford Integrity by Proof-of-Work? Scenarios Inspired by the Bitcoin Currency, 135, 148, in THE ECONOMICS OF INFORMATION SECURITY AND PRIVACY (Rainer Böhme, ed., 2013); cited in Christopher, supra note 7, at 176; Antonopoulos, supra note 60, at 211-212.

70 Cf. Walch, supra note 60, at 862.

71 For instance, on March 7, 2015, five Bitcoin mining pools were subject to a DDOS attack that prevented miners from mining for six hours. The attacker demanded five to ten bitcoins to end the attack. See Julia McGovern, Official Statement on the Last Week’s DDoS-attack against GHash.IO Mining Pool, CEX.IO (March 16, 2015), https://blog.cex.io/news/official-statement-on-the-last-weeks-ddos-attack-against-ghash-io-mining-pool-14156 (last visited June 30, 2017).
3. Operational Risks

Insufficient Coding

While the standardization and automatization that form part of DLT mitigate— in principle—operational risk, an error once implemented in the code may easily spread over the whole system affecting a greater number of nodes and individuals than a concentrated ledger. This creates serious problems in light of the fact that “there is no such thing as flawless software; there are always errors or ‘bugs’ that negatively affect the performance of the software or make it vulnerable to attack by hackers.”

In particular, poorly maintained, outdated or deficient code could open the door for system hacks, such as those that occurred in the Mt. Gox and DAO cases.

Key Person Risk

Distributed ledgers rely on sophisticated software codes that are permanently rewritten in an effort to improve performance and security. As with all software, few experts understand the structure, and even fewer are able to adapt it if weaknesses of the code become known. This is particularly true in the case of permissionless ledgers, such as Bitcoin where

[a] small group of core developers has password access to the code. They review and evaluate the suggestions made by other programmers, incorporate what they consider to be the good suggestions, and promulgate revised versions of the code for network adoption. They approve small changes by fiat, but for larger ones they moderate a public debate about the utility of the change. This bottleneck of human oversight doesn’t fit the narrative of central-bank-less currency, which may be why many advocates avoid discussing it.

In all business organizations key people pose a risk to the organization— they could become sick, tired, mentally unwell, subject to extortion or corruption. Regardless of the reason if the trust put in key people is ill-placed the ledger’s security and reliability are at risk. This general risk may be increased in some distributed ledgers (such as Bitcoin) if the key people in charge fail to convince a sufficient number of users to update their version of the code, resulting de facto in a loss of key person

72 See ESMA, supra note 2, at 11, ¶38.
73 See Walch, supra note 60, at 856. This is particularly true for the software underlying the Bitcoin system, see Walch, supra note 60, at 858 (detailing a list of bugs and identified fixes in n. 99-102). The statement counters the open source mantra according to which “the more eyes look at the code the more can fix and react”.
74 See Xu, supra note 55, at 5.
75 See Walch, supra note 60, at 865-867.
76 See Christopher, supra note 7, at 150; see also on further examples, Grinberg, supra note 7, at 175-176.
77 See Walch, supra note 60, at 860-861 (citing Bitcoin proponent Antonopoulos, supra note 60, at 157, 211).
capacity and an uncertain future of the ledger. If this happens questions will be asked as to who is accountable for the key person’s underperformance or misconduct.

Negligent Performance

For large scale financial services data, security and processing speed are of the essence. Assuming that a distributed ledger ensures certain security and processing standards to market participants in an effort to enhance market share, the question of who is responsible will be asked if the ledger fails to meet these standards. Another example of negligent performance (in this case on the user’s side) is the user sending virtual currency to the wrong address: is there anyone to whom the user can turn for redress?

B. Legal Consequences

Even in light of its limits, DLT is likely the safest way to ensure that data are not modified. At the same time, DLT’s limits lead to legal questions. In particular, if a system may be broken or inaccurate or private data are stored via a distributed ledger, the legal question of who will be liable for losses will arise.

This question is not easy to answer given that DLT is a technological, not a legal, concept. Operating a blockchain tells us, in the first instance, nothing about the legal scheme underpinning the blockchain. This has several implications.

1. Applicable Law

First, very few governments have as yet adopted a Blockchain law. That does not mean, however, that no law applies or, as has been stated, law’s focus needs to shift from individuals to (web) communities – we pesky lawyers cannot be so easily sidelined. Rather, lawyers facing innovation look at the legal system as a whole and apply the system’s foundational principles, and the law will provide an abundance

78 See Lulu Yilun Chen & Yuji Nakamura, Bitcoin Is Having a Civil War Right as It Enters a Critical Month, BLOOMBERG (July 10, 2010), https://www.bloomberg.com/news/articles/2017-07-10/bitcoin-risks-splintering-as-civil-war-enters-critical-month (stating that “[a]fter two years of largely behind-the-scenes bickering, rival factions of computer whizzes who play key roles in bitcoin’s upkeep are poised to adopt two competing software updates at the end of the month. That has raised the possibility that bitcoin will split in two, an unprecedented event that would send shockwaves through the $41 billion market”).

79 Example taken from Christopher, supra note 7, at 176.

80 Arizona has adopted a blockchain law. Others are considering.

81 Cf. Lawrence Lessig, The Law of the Horse: What Cyberlaw Might Teach, 113 HARV. L. REV. 501 (1999) (arguing in favour of adaptation of the law to cyberspace); Dulong de Rosnay, supra note 22 (positing that “distribution of actors and actions requires a rethinking of legal categories” since the “notions of the author of an action, content or object are no longer tangible units but aggregated, open-ended and evolving fragments”). The author, however, confuses law with its enforcement. The facts mentioned may render enforcement difficult, but do not change the fact that the law assigns rights and liabilities even in a distributed system. See, on enforcement difficulties due to irreversibility of the blockchain, Paech, supra note 17, at 23-24.

82 Cf. Frank H. Easterbrook, Cyberspace and the Law of the Horse, 1996 U. CHI. LEGAL F. 207 (1996) (demonstrating the importance of principles); Richard A. Epstein, Simple Rules for a Complex World (1995) (stating that principles are well equipped to govern complex technical concepts); Raskin, supra note 19, at 972 (“novel problems do not require novel solutions”). But see Paech, supra note 17,
of generally applicable principles, including the law of contracts, torts, property, partnerships and companies, some of which are enshrined in legislation while others (in particular in common law countries) are in case law which applies in the absence of specific legislation. Applying law to DLT will not be about “uncovering a functional equivalent – another [legal] institution that, although different in structure, serves the same purpose...”83, but will entail applying general principles in the absence of specific legislation.84

2. Ledger Hierarchy

Second, DLT tells us nothing about the entities involved nor their governance roles. For instance, multiple servers functioning as nodes can belong to one legal entity (firm or person) or financial group or multiple unrelated owners. With regard to governance, in the case of permissionless blockchains, node owners typically will not even know who else is part of the blockchain and a more or less ‘benevolent dictator’85 will make the decisions (or more precisely ‘dictators’ since a group of core developers will tend to call the shots), while a permissioned blockchain may have highly developed and legally sophisticated governance structures.

For the purpose of generalization we rely on a DLT hierarchy involving five groups:

(1) the core group that sets-up the code design and (de facto) governs the distributed ledger, for instance by having the technical ability and opinion leadership to prompt a ‘hard fork’ of the system (under certain conditions)86;

(2) the owners of additional servers running the distributed ledger code for validation purposes (such as Bitcoin nodes = owners, Ripple validation nodes etc.).

at 23-24, 28 (stating that system issues render enforcement difficult, implying that legal claims are granted by the law, and demanding that “de facto acquisition on the basis of the operation of software needs to be recognised by private law itself” – without further details).

83 Reyes, supra note 1, at 222-227 (summarizing comparative law methodology and suggesting an endogenous, functional approach).

84 For instance, US courts and criminal enforcement agencies rigorously enforced criminal laws against Silk Road’s master mind Ross William Ulbricht, fitting Bitcoin into existing jurisprudence. See the references in supra note 19.

86 See as an example, The DAO, The Hack, The Soft Fork and The Hard Fork, CRYPTOCOMPARE (April 20, 2017), https://www.cryptocompare.com/coins/guides/the-dao-the-hack-the-soft-fork-and-the-hard-fork/ (last visited June 18, 2017); for further examples, see Grinberg, supra note 7, at 175-176; Christopher, supra note 7, at 150. The US Financial Crime Enforcement Network applies its AML rules to “administrators and exchangers” of “convertible virtual currencies”: see Comizio, supra note 6, at 141 et seq. Although FinCen does not mention the core developers, we deem “administrators” to include core developers.
(3) ‘qualified users’ of the distributed ledger, such as exchanges, lending institutions, miners etc;\(^{87}\) and

(4) ‘simple users’ of the system, such as owners of Bitcoin,\(^{88}\) Ether or investors in the DAO;

(5) third parties affected by the system without directly relying on the technology, for instance counterparties of, and banks lending to, ‘simple users’, clients of intermediaries that clear their financial assets via DLT, clients of brokers that hold virtual currency on behalf of clients, etc.

Figure 2: Ledger Hierarchy

3. Variety

Third, DLT is a concept with **multiple variations**. From a distance Bitcoin, Ethereum, R3 and Ripple are all built on DLT so one is tempted to generalize, but up close they are very different animals. Generalizations are not warranted. Each DLT serves a certain use case which ranges from currency, pegged services, automatic execution of functions to permanent organizations.

\(^{87}\) The US Financial Crime Enforcement Network applies its AML rules to “administrators and exchangers” of “convertible virtual currencies”, see Comizio, *supra* note 6, at 141 *et seq*. “Exchangers” include all qualified users in this sense. On the role of intermediaries in the Bitcoin blockchain, see Christopher, *supra* note 7, at 151, 174.

\(^{88}\) In the Bitcoin ledger, validation nodes (element 2) and owners (element 3) are identical.
Depending on the DLT’s design and use case the number of users, the technical complexity and the delivery timeframe will vary – and so will the legal questions.

As a result, when considering DLT from the accountability perspective, it is crucial to:

1. determine governance structure and entities involved;
2. clarify which legal standards apply to which DLT processes and services;
3. ensure the robustness of the IT processes given their great importance for the existence of the firm (from ‘important’ to ‘indispensable’), leading to enhanced regulatory attention with regard to server infrastructure, redundancy, access rights, server location, etc;
4. ensure that the algorithms achieve ‘correct’ results, requiring regulators to define which documentation (or data interfaces) need to be provided by intermediaries, which test routines must be embedded in the algorithms, and who has access to the source code and data bases used; and
5. clarify liability and responsibility for failure of the IT systems and algorithms.

The remainder of this section focuses on the fifth question.

C. Joint Control as Legal Qualification of a Blockchain

If we factor in liability, embedding DLT in financial transactions may produce results that many will find surprising. A DLT entity (whether operator or participant) may need regulatory capital, counterparty risk controls, and other measures similar to other

forms of financial infrastructure (such as central counterparties). In turn the legal
design of the DLT may look different from the technological design, for instance
ownership may be distributed, concentrated or centralized.

1. Code as law? – The Debate

There is a lively debate as to whether ‘software code is law’.90 Three perspectives are
relevant here.

First, Lawrence Lessig originally meant ‘code is law’ as a metaphor, “in that the code
controls behavior as law might control behavior”.91 Code design and structure will
define the freedom of users: the code will determine what users can and cannot do,
and what they must and must not do when using the system. This will be particularly
so in the machine-based interactions often referred to as smart contracts.92
Furthermore, some legislatures, such as that of Arizona, have clarified that smart
contracts are as legally effective as other contracts, by enacting legislation giving
legal status to smart contracts and blockchain based signatures, treating them as any
ordinary contract or signature.93 In turn, contract law applies to blockchain based

90 To our knowledge the discussion dates back to Lawrence Lessig’s seminal book CODE AND OTHER
LAWS OF CYBERSPACE 24 et seq. (1999); Lawrence Lessig, Foreword, 52 STAN. L. REV. 987 (2000);
Lawrence Lessig, Open Code and Open Societies: Values of Internet Governance, 74 CHI. KENT. L. REV.
1405 (1999). From a legal perspective, the statement is ill-received. Statutes and cases comprise law;
code can only be the subject of law. Legal authors tend to use the variant “code-as-law”: see Reyes, supra
note 1, at 196.

91 Lessig, Foreword, supra note 89, at 990; Lessig, Open Code and Open Societies, supra note 89, at
1408 (arguing that “[t]he code of cyberspace—whether the Internet, or a net within the Internet—defines
that space. It constitutes that space. And as with any constitution, it builds within itself a set of values
and possibilities that governs life there … And the design of code is something that people are doing.
Engineers make the choices about how the world will be. Engineers in this sense are governors”).

92 See on smart contracts, the pioneering work by Nick Szabo, The Idea of Smart Contracts, in NICK
SZABO’S PAPERS AND CONCISE TUTORIALS (1997); and Nick Szabo, A Formal Language for Analyzing
Contracts, in NICK SZABO’S PAPERS AND CONCISE TUTORIALS (2002), available at http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/contractlanguage.html; see also Baker, supra note 6, at 360-363; Anthony J.

93 See Arizona Gives Legal Status to Blockchain Based Smart Contracts, TRUSTNODES (April 3, 2017),
http://www.trustnodes.com/2017/04/03/arizona-gives-legal-status-blockchain-based-smart-
contracts/?utm_content=bufferd6cf5&utm_medium=social&utm_source=linkedin.com&utm_campaign
=buffer (last visited April 30, 2017) (stating “[a] signature that is secured through blockchain technology
is considered to be in an electronic form and to be an electronic signature. A record or contract that is
secured through blockchain technology is considered to be in an electronic form and to be an electronic
contracts, removing any uncertainty and making it clear that any blockchain based agreement is fully enforceable in a court of law.

The second dimension includes the questions of who owns the distributed ledger software code; this is a question of property or copyright law and the legal protection of designs. The answer may have repercussions, however, as to the question of who is responsible for the code from a tort law perspective, addressed in section III.D.2 below.

The third perspective relates to the question of the legal treatment of the cooperation underlying a distributed ledger. Questions in this analysis include: are those cooperating in a system liable for failures, and who among all the various nodes bears the legal responsibility for system hacks? These questions are of particular importance with regard to the legal design of a distruted ledger system; the remainder of this section addresses these questions.

We will focus on the third issue of whether there are legal grounds for liability before arguing against the ‘code-is-law’ argument as a defence against the liability claim (if any), which is considered in more depth in section III.D.5.

2. Application of Law to the Distributed Ledger

With regard to the question of the legal treatment of the cooperation underlying a distributed ledger, the type of cooperation created by code is of legal relevance:94

First, in general, law covers all relations among people and items owned and controlled by them. There is no carve-out for cooperation in a distributed ledger.

Second, no legislature is likely to enact an exception to this catch-all characteristic of law as it would promote irresponsible behaviour by those controlling the distributed ledger. No legal system could afford a carve out for DLT interactions, given the loopholes it would create.

Third, the discussion as to whether human beings are responsible for machines is of long-standing, since at least the industrial revolution. In all jurisdictions of which we are aware the answer to this question has been the same: the law will cover, and be applied to, new situations and inventions appropriately modified to the new circumstances.

Further, individual transactions executed via a distributed ledger are likely to be contracts – with all related consequences, whether recorded only in code or in words. Each transaction is likely to give rise to liability in the event of failure; which will sound in real-world obligations, and potentially in bankruptcy.

The fact that law will apply is to be distinguished from the question of which law will apply. This will be determined by the application of the conflicts of law rules of the

94 Cf. Koulu, supra note 92, at 54.
courts with potential jurisdiction over the matter, including their treatment of any choice of law provision in any agreement establishing the DLT.

3. Distributed Ledgers vs. Business Networks

From the outset, one is inclined to liken distributed ledgers to traditional ‘business networks’ (such as franchise systems, credit card networks and supply chains involving multiple parties). However, distributed ledgers differ from such traditional hybrid organizations in one important respect: While all members of the network (e.g. franchisor and franchisees) are linked together by the common business interest (for instance, in the brand appeal), from a legal perspective traditional business networks follow the hub-and-spokes model, where the spokes (e.g. the franchisees) are connected to the other spokes only indirectly through a contractual relationship to the ‘hub’ (for instance, the franchisor). The fact that the legal connection is a mere indirect one functions as a legal barrier: Rather than treating the whole operation as one multilateral contract or business organization due to their economic connection all contracts between hub and the spokes have bilateral effect only. This prompts three consequences. First, one spoke has no legal standing to sue the another spoke for unfaithful conduct with regard to the common objective: In a hub-and-spoke network, in the absence of contracts with explicit third-party benefits defined, there is no loyalty owed to the network; and in principle courts are reluctant to find implied terms based on loyalty to the overall organization, fair dealing, ‘business necessity’ and standard business practice. Second, legal action must follow the path predefined by contractual relationships. In the absence of explicit bilateral contracts parties to a network cannot bring economic claims against each other. In particular, one spoke cannot recover pure economic loss ‘horizontally’, i.e. from the other spoke rather than

95 LORD COLLINS, ET. AL., DICEY, MORRIS AND COLLINS ON THE CONFLICT OF LAWS (2016); ADRIAN BRIGGS, PRIVATE INTERNATIONAL LAW IN ENGLISH COURTS (2014).

97 This was suggested by Teubner, id., at 145 et seq.; his position finds support in scholarship, see for instance: Gillian K. Hadfield, Problematic Relations: Franchising and the Law of Incomplete Contracts, 42 STAN. L. REV. 927 (1990); Roger Brownsword, Network Contracts Revisited, 31, in NETWORKS: LEGAL ISSUES OF MULTILATERAL CO-OPERATION (Marc Amstutz & Günther Teubner, eds., 2009); the contributions in THE ORGANIZATIONAL CONTRACT: FROM EXCHANGE TO LONG-TERM NETWORK COOPERATION IN EUROPEAN CONTRACT LAW (Stefan Grundmann, Fabrizio Calaggi & Giuseppe Vettori, eds., 2013). However, to our knowledge, this approach has not received general support by the courts. For an analysis of the English courts’ case law, see Collins, supra note 95, at 35 et seq.

98 See, for instance, on franchise systems, Burger King Corp v Family Dining, 426 FSupp 485 (ED Pa), aff’d, 556 F2d 1168 (3d Cir 1977) (arguing in favour of a strict interpretation in a case where the franchisee had, with significant investment, opened 9 franchise stores where his contractual obligations amounted to opening 10 stores); Taylor Equip Co v John Deere Co, 98 F3d 1028 (8th Cir., 1996) (finding that the implied duties of good faith and fair dealing do not override express terms); Bak-a-Lum Corp of America v Alcoa Building Products, 351 A2dn 349 (New Jersey, 1976) (stating that implied duties override express provisions in cases of extreme dishonesty and unfairness and extreme losses on the side of the franchisee); Seven Eleven Corporation of SA (PTY) Ltd v Cancun Trading No 150 CC, Case No 108/2004, 24 March 2005 (limiting the rebates to be distributed under a rebate sharing agreement with franchisees to rebates granted for bulk purchases, assigning other rebates and soft commission to the franchisor); Dymocks Franchise Systems (NSW) Pty Ltd v Todd [2002] UKPC 50 (7 October 2002) (finding an implied term of good faith that prevents the franchisee to call other franchisees for a strike). The courts’ reluctance regarding implied obligations has prompted criticism, for instance in Hadfield, supra note 97.
the hub. The spoke sued will invoke the doctrine of privity of contract and in tort law challenge the standing of the claimant.99 Third, there is no external liability of ‘the network’ vis-à-vis third parties; rather, each spoke and the hub will be treated separately, and liability must be established against them individually.100

By contrast, rather than indirectly through a hub, in a distributed ledger all nodes (group 2 of our hierarchy) are linked directly together, in that they together communicate in the consensus process and thereby determine which data stored via the ‘the common ledger’ is right and wrong. This connection removes the hierarchical relation derived from the hub to spoke characteristic for business networks and justifies the term ‘peer-to-peer networks’. In turn we find no difference between horizontal and vertical anymore – all links to other nodes are by definition ‘on the same level’, pursuing a common objective. From a legal perspective, the connection provides the (in business networks: missing) link between the network partners. Where traditional business networks are mere virtual networks, distributed ledgers are ‘real’ networks – with a real physical (tech) link. While distributed ledgers vary in terms of software processes and thus their legal qualification is likely to vary, we posit that legal consequences follow from this direct link among the nodes: It is the tipping point at which a loose assembly of self-interested entities turns into a group of entities legally tied together.

3. ‘Shared control’ as a Common Feature of Distributed Ledgers

The very fact of distribution among many ledgers which together perform a commercially relevant function renders legal consequence likely. At the same time, the joint performance assigns to all nodes together significant influence over all users’ positions in that they can together exclude any single user from participation. For instance, if all but one user upload a new software version incompatible with the old one, the value of the remaining user’s position in the ledger suffers.101 In most systems, agreement among a 51\% majority of nodes or computing power is determinative. The operations of the information technologies interacting in a distributed ledger could be treated like those of the human beings controlling the servers and computers on which the software runs, or be treated like items a person is responsible for, similar to an animal or a car. In this case, the law would ask whether the person engaged in negligent conduct, i.e. violated a standard of care when the item inflicted harm on someone.

We infer from such quasi-organizational characteristics of the distributed ledger which go beyond mere economic interest that the whole ledger has a purpose or aim –

99 Cf. Collins, supra note 96, at 14-15, 51-63 (citing English and German case law).

100 Cf. id., at 64-71.

101 On March 11, 2013, an inadvertently created hard fork due to incompatibility of Bitcoin 0.7 with Bitcoin 0.8 almost destroyed value stored via the Bitcoin blockchain. The core developer convinced one significant exchange to reinstall the old version. The exchange controlled sufficient computing power within the Bitcoin’s system to shift the majority consensus back to version 0.7. See Gruber, supra note 20, at 164; NATHANIEL POPPER, DIGITAL GOLD: BITCOIN AND THE INSIDE STORY OF THE MISFITS AND MILLIONAIRES TRYING TO REINVENT MONEY 194-195 (2015); Walch, supra note 60, at 865-867. This example is evidence of both the importance of core developers and the concentration of computing power in the Bitcoin blockchain.
the joint performance of the ledger service – from which obligations to cooperate and of loyalty as well as internal and external liability could follow.

For instance, the distributed ledger could be deemed a **joint venture**. The core group that sets up the system is a clear potential example, but this could extend further, for instance if nodes contribute and benefit to the same extent as the core group or even ‘simple users’ could be deemed joint venturers by third parties that rely on their service. One could also understand the joint performance to constitute a **multi-party contract** with the core group and all nodes functioning as contractors that commit to adhere to the processing rules and maintain a certain level of security. If the core group fails to deliver, or one or more of the nodes does not perform the necessary processes or does not maintain the minimum data security level, the fellow contractors could rely on contractual liability. In some jurisdictions we may also find sufficient ground to argue that the distributed ledger is an **incorporated business organization** or **partnership**.

Once it is established that distributed ledgers have a sufficiently close organizational relation (regardless of how this is legally interpreted in any given jurisdiction) duties based on good faith as determined by the common good, liability among the ledgers (i.e. internal network liability) and liability to third parties (i.e. external network liability) could be presumed to arise. In turn, one node owes to the other loyalty (for instance, regular software and hardware updates to maintain the ledger’s performance) and is directly liable for economic loss in case of its breach. Further, if a third party is damaged by inaccurate or insecure data storage which is, as was shown, possible, the third party could direct its claim based on **tort law or special liability statutes**\(^\text{102}\) to all nodes together.

This preliminary result arises in light of the six features of distributed ledgers\(^\text{103}\) including:

1. joint access to data (‘distributed’);
2. joint information about the process (‘publicity’ / ’transparency’);
3. joint administration (in that no single ledger alone can determine the outcome) (‘decentralized’);
4. joint development, i.e. to change the underlying code some consensus mechanism is necessary and no single node alone can determine the outcome;
5. permanence – data cannot be erased, a permanent log is maintained in which all transactions may be tracked by order of processing; and
6. verifiability – the above features combine to mean data cannot be amended while stored except through a major, trackable process (‘immutability’).

\(^\text{102}\) In some common law countries special liability statutes were implemented to provide a greater degree of certainty in the field of tort law. See infra, at D.2.

\(^\text{103}\) See DuPont & Maurer, *supra* note 5 (arguing that key characteristics of a blockchain include that the ledger is “distributed, decentralized, public or transparent, time-stamped, persistent, and verifiable”).
From a legal perspective some type of liability – joint, several or proportionate – could arise from this joint control towards third parties and among the nodes themselves. Which type of liability will arise will depend on the details of the DLT system, in particular the consensus mechanism, and on the rules of the specific applicable legal system or systems. However, our baseline position is that there are significant potential liability risks for entities involved in a distributed ledger, particularly those with design, control and/or maintenance roles.

D. Liability Risks in Major Legal Systems

Given that private law differs from country to country we will address the three main legal families in the world including French civil law based on the Code Civil (which extends to many Western European, African and South American countries), Common Law (as examples we address the US, the UK and Australia), and Germanic civil law which is influential in, besides Germany, Austria, the Netherlands, Switzerland, China, Japan and Turkey.

We consider liability that may arise in one of four ways, by way of (i) contract, (ii) tort, (iii) partnership or joint liability, and (iv) specific legislation. Of course, the specifics of each head of liability will be entirely jurisdiction specific, so our analysis is general, and intended to do no more than make the point that participants in a distributed ledger are highly likely to be potentially subject to liability, one way or other, for their conduct. Proponents of DLT often like to pretend that the technology is somehow beyond the law, or at least, the law’s reach. But courts will never allow such a restriction in their jurisdiction. The courts of sophisticated legal systems are jealous of the extent of their jurisdictions and for the very good reason that citizens should not be without redress in their nation’s courts.104

1. Contract

In contract law each party is liable under the terms of the contract, i.e. for that which the contract says they are liable. The parties to the contract are not the computer as non-human electronic agent, but the person that exercises control (by virtue of ownership, management rights, or otherwise) of the non-human agent; the contractual acts – meeting of minds, breach of contract, performance – are attributed to this socio-technical ensemble.105 In order to establish liability, a contract and a breach of the contract are required.

Without doubt both contract and breach may be established (and have been established106) in the relationship between groups 2-4 of our distributed ledger.

104 See The Eleftheria [1970], at 94 (per Brandon J); IRB-Brasil Resseguros v Inepar Investments, S.A. No. 191 (New York Court of Appeals).

106 Cf. the Bitcoin-denominated Ponzi scheme run by Trendon Shavers, who defrauded investors out of more than 700,000 Bitcoins. The respective SEC enforcement action resulted in an order to disgorge investments amounting to more than US$40 million and a civil penalty of US$150,000 to be paid by both Shavers and the investment vehicle set up by him, see SEC v. Shavers, No. 4:13-CV-416, 2014 WL 4652121 (E.D. Tex. Sept. 18, 2014); U.S. Securities and Exchange Commission, Litigation Release No.
hierarchy, on the one side, and group 5 on the other. For instance, if the Bitcoin broker breaches its promise to hold a certain amount of virtual currency on behalf of its client the broker will be subject to a contractual claim by its client.107

Beyond this obvious case contractual relations extend further into the direct relationships among group 1 to 4 of our DLT hierarchy, given that both contract and breach can be established.

A contractual agreement requires an offer and acceptance (to establish mutual assent), consideration (anything of value exchanged) and an intention to create legal relations.108 As to offer, acceptance and mutual assent: In our DLT hierarchy we suggest that hierarchy groups 1 and 2 – the core group and validation nodes – are parties to the ‘distributed ledger contract’ given that without them the system would not work.109 Even if some members of DLT hierarchy groups 1 and 2 do not wish to enter into legally binding relations, the fact they participate in the system knowing that third parties will rely upon it, may turn their participation in the distributed ledger into legally consequential conduct.110 In particular, in the Bitcoin blockchain individuals who wish to participate in the ledger join the network – and declare their consent to the disclosed *modus operandi* – by downloading the freely available Bitcoin software and thus volunteering their computer to run the Bitcoin ledger software.

Consideration matters in most common law systems. It may be less readily identifiable given the uncertain flows of assets in open source and permissionless systems, however, any type of consideration will suffice. Consideration can take the form of additional virtual assets (as in the case of Bitcoin miners), traffic (for advertisement purposes) or fee payments. The fact participants willingly enter into a distributed ledger, suggests they perceive value from doing so. And of course in civilian legal systems, consideration is not usually a precondition for the existence of a contract.111

107 Cf. Bayern, supra note 21, at 25-29.

109 Even if we do not consider the validation nodes parties to the DL ‘contract’, their conduct may matter if we include them as agents to the core group.

110 The legal basis for that may vary. In the UK or Australia such conduct could give rise to remedies under statutory law, see *infra* at D.2. In the US, an implied contract is likely to be found to exist, see USC, in *re Baltimore & Ohio R. Co. v. United States*, 261 U.S. 592, 597, 58 Ct.Cl. 709, 43 S.Ct. 425, 67 L.Ed. 816 (1923) (holding that “an agreement … is inferred, as a fact, from conduct of the parties showing, in the light of the surrounding circumstances, their tacit understanding”).

111 For instance, s. 311 of the Bürgerliches Gesetzbuch does not require consideration as a precondition for a “Schuldverhältnis” (best translated as ‘obligation’). Generally speaking, laws based on the Roman contract law don’t insist on consideration as a precondition for obligations.
Second, whether there is a breach of contract depends on conduct in the context of the contract’s terms. General principles of contract law apply: Whether a term is a condition or a warranty depends on the intentions of the party discerned from the contract in light of context. The more important such features are for one party, and the more clearly they are expressed prior to entering into the agreement, the greater the likelihood that judges will consider them as part of the contract. Warning language displayed prior to entering into the contract may constitute terms. Disclaimers and liability waivers may further limit obligations if they are upheld in court.112 For contractual liability, however, it makes no difference whether the damage resulted from the misconduct of a human being or a machine’s malfunction. The owner or operator is liable for the machine’s malfunction.113

Contractual liability results in joint liability where the causes of actions are not distinct and the defendants acted in furtherance of a common purpose.114 Generally speaking all multiple nodes functioning together to run the ledger (hierarchy group 2), and all core developers developing the code together (hierarchy group 1) would meet that test on their respective hierarchy level. If nodes and developers cooperate, hierarchy groups 1 and 2 may find themselves tied together by joint liability vis-a-vis third parties.115

Some authors suggest no contractual relationship exists in distributed networks where the user is unknown and the userbase unstable, where the performance of the service depends on who is connected at what time, and none of the individual nodes is

112 General Public License or Open Source Software Licenses (OSSL) used by open source developers, including those that distributed the codes of Bitcoin and ETHER, use very broad language to limit liability. For instance, the MIT license states “THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.” It is uncertain, however, whether courts will listen to this argument given that not a lot of courts have interpreted and applied the provisions of open source licenses. In particular, legislation in some countries provides for certain non-excludable warranties where a firm is carrying on a business. For instance, the U.S. Uniform Commercial Code § 2-314 to § 2-316 provides that certain warranties are implied in the sale of a product (as adopted by U.S. states); the Australian Competition And Consumer Act 2010 (Cth) sch 2 s 54 stipulates that there “is a guarantee that the goods are of acceptable quality.” In light of such statutes, the exclusion clauses may not be effective in limiting liability for negligence and consequential damages. See for the US: ROD DIXON, OPEN SOURCE SOFTWARE LAW 104-105 (2004) (stating that the exclusion of liability is void); for Australia: Brian Fitzgerald & Nic Suzor, Legal Issues for the Use of Free and Open Source Software in Government, 29:2 MELBOURNE U. L. REV. 412, IV (2005) (arguing that the GPL liability exclusion will not withstand court scrutiny); for Germany: TILL JAEGER & AXEL METZGER, OPEN SOURCE SOFTWARE ¶219, 224, 242, 266 (4th ed., 2016) (arguing that the exclusion of liability used in American open source licenses is null and void in certain cases due to violation of German legislation on prescribed contract terms; more generous exclusions can be agreed upon in at arms length negotiations).

113 For instance, for French law: PHILIPPE MALAURIE, PHILIPPE STOFFEL-MUNCK & LAURENT AYNÈS, DROIT DES OBLIGATIONS 75 (2016).

114 For German law, ss. 421 of the Bürgerliches Gesetzbuch.

115 This does not mean that groups 1 and 2 are liable towards each other, nor that end users necessarily have claims against the developers. See on the discussion of waivers, \textit{supra} note 112.
in itself essential (such as in permissionless blockchains like Bitcoin). Proponents of the idea that the DLT relationship does not give rise to legal rights refer implicitly to participants’ lack of intent to grant contractual rights to co-users. However, business entities are often unaware of all participants, and their roles, in complex business interactions. A distributed ledger is a complex network of users and contractual relationships that may change from time to time depending on who is participating in the ledger operation. While anonymity of the parties renders enforcement potentially difficult, it does not mean the actions of individuals who together ‘operate’ the distributed ledger are not legally relevant.

In a distributed ledger, IT-based messages and transactions coincide; any message a node sends is a declaration of intent and contribution to the transaction. It is inconsistent to deny legal relevance of cooperation where only reliance on others ensures access to one’s own asset value and where this very cooperation by others is the precondition of contributing to the ledger in the first place. A simple example may demonstrate our point: assume miners on the Bitcoin blockchain find, for whatever reason, that no one will accept (today) the newly and properly generated Bitcoins, or (after 21 million Bitcoins are mined) who will accept the recycled split Bitcoins, effectively creating a fork between the blockchain leading to this miner and all others. The miner who invested significant processing power (i.e. energy) will either turn to the Bitcoin nodes that validate honestly mined coins (i.e. all who hold Bitcoins directly) for fulfillment of the promise given to them that honestly mined coins would be added to the chain and thereby receive value, or to the core developers, for damages. In both cases the miner has standing to sue based on the promise received by all Bitcoin nodes together, regardless of the fact that the miner did not, at the time,

116 Dulong de Rosnay, supra note 24, sub 2.; Aaron Wright & Primavera De Filippi, Decentralized Blockchain Technology and the Rise of Lex Cryptographia, 55 (Unpublished manuscript, March 12, 2015), available at https://ssrn.com/abstract=2580664; Bayern, supra note 21, at 31-33 (arguing that “a bitcoin does not represent a transactional or organizational right in the way that shares of stock or a partnership interests do” and stating that “given merely my knowledge of a secret key for a certain amount of bitcoins, there is nobody associated with Bitcoin against whom I have a claim-right, and conversely nobody has a duty to me – apart from the general duty to refrain from interfering with intangible personal property. Those running the Bitcoin software are free to ignore my attempts to transfer bitcoins to a new bitcoin address. They have no contract with me, implied or otherwise. They are free to ignore me, to dispute my ownership of bitcoins on technological grounds, and so on.”)

117 Bayern, supra note 21, at 31-33 (arguing that “a bitcoin does not represent a transactional or organizational right in the way that shares of stock or a partnership interests do” and stating that “given merely my knowledge of a secret key for a certain amount of bitcoins, there is nobody associated with Bitcoin against whom I have a claim-right, and conversely nobody has a duty to me – apart from the general duty to refrain from interfering with intangible personal property. Those running the Bitcoin software are free to ignore my attempts to transfer bitcoins to a new bitcoin address. They have no contract with me, implied or otherwise. They are free to ignore me, to dispute my ownership of bitcoins on technological grounds, and so on. … In this sense, a bitcoin is not a right against the other users of the Bitcoin network”).

118 This has prompted Teubner to analyze “Networks as Connected Contracts”: see Teubner, Networks as Connected Contracts, supra note 95; see also Günther Teubner, In the Blind Spot: The Hybridization of Contracting, 8 THEORETICAL INQUIRIES IN L. 51 (2007).

119 This concept is inherent in automatized transactions. See, on smart contracts: Koulu, supra note 92, at 61 (“A transaction is a message, a message is a transaction. … By making the transaction, each party enters into a contract”) and at 65 (“the declaration of intent is given through a transaction to the contract itself”).
know the nodes nor the developers. While enforcement may be difficult, we must not confuse potential for legal liability with the challenge of enforcement.

Another argument against contractual liability is that node operators may have no way of knowing to which use their fragmented contribution to the network is put, which for instance could include money laundering or terrorist financing. Again, this argument is flawed. Nodes could require AML/CFT checks as a precondition for hard currency being exchanged into virtual assets – they could define this as a precondition for the overall use of the networks. The fact that nodes sign up to the network (i.e. buy / sell / mine Bitcoins) without AML/CFT checks may evidence ignorance of the law but not the law’s inapplicability.

2. Law of Torts / Delict and Special Liability Statutes

Joint tortfeasors are two or more individuals with joint and several liability in tort for the same injury to the same person or property. Joint and several liability means the plaintiffs can collect any damages award from any one of a group of joint tortfeasors. Tort claims are particularly important where there is no contractual liability, in particular with regard to DLT hierarchy group 5 suing the other DLT hierarchies, or in the case of DLT hierarchy groups 1 and 2 being sued by DLT hierarchy groups 3 and 4 in the absence of a contract.

While the importance of these claims varies across jurisdictions – in many common and German-law based civil law jurisdictions the courts are loathe to award damages in tort for pure economic loss – the type of loss to which most risks will give rise. On the one hand tort claims could arise from damages to ‘property’ via the distributed ledger. The relevance of property-related claims depends on the legal qualification of the plaintiff’s position in the system. For instance, if a Bitcoin is deemed tangible property intentional interference (i.e. a hack or hard fork resulting in temporary

120 The miner would turn to the nodes it can identify and ask them to pay damages. See Dulong de Rosnay, Peer-to-Peer, supra note 24, sub 2. (suggesting collective insurance to mitigate the impact, but going on to argue that ‘collective intentionality’ would lack legal personality).

121 Cf. Dulong de Rosnay, supra note 24, sub 3. (drawing the conclusion that it is questionable whether joint commitment or responsibility or contract may be applicable and helpful notions in the quest for distributed legal persons, rights or duties); Wright & De Filippi, supra note 114, at 55-56.

123 See Primavera De Filippi, Ethereum, 100, in Méadel & Musiani, supra note 24 (arguing in favor of tort claims against DAO developers); Wright & De Filippi, supra note 114, at 55-56 (arguing in favor of the developer’s liability and against the user’s liability since the user did not know, or did not have a good reason to believe that the third party could potentially cause harm to someone); Francesca Musiani, Cécile Méadel, Alexandre Mallard, Bitcoin, 45-46, in Méadel & Musiani, supra note 24 (considering tort claims against Bitcoin code developers, while denying them against miners, nodes and owners of BTC).

124 Cf. Raskin, supra note 19, at 984-1005 (arguing that Bitcoin is tangible property for the purposes of Civil Procedure due to the exclusionary effect of the “owner’s” access key and in favor of allocating jurisdiction based on rights in rem). Raskin’s opinion is shared by the US Internal Revenue Service, see US Internal Revenue Service, Notice 2014-21 IRS Virtual Currency Guidance (March 25, 2014) https://www.irs.gov/irb/2014-16_IRB/ar12.html (arguing that virtual currency is property for tax purposes). But, see Schroeder, supra note 17, at 14-27 (arguing that Bitcoin is not “money” under the
denial of access or even permanent diversion of the Bitcoin owned by the user) could result in claims based on trespass to chattels or conversion,\(^\text{125}\) while the application of tort law to Bitcoin as intangible property\(^\text{126}\) is less certain.\(^\text{127}\) On the other hand, claims could stem from fraud, theft or other types of illicit conduct. Code modification could amount to any of the former.\(^\text{128}\) Whether code modification in fact amounts to fraud or other types of actionable harm depends, among others, on the users’ intention. In most jurisdictions, intentionally inflicting harm on others results in liability for damages.\(^\text{129}\)

An entity operating in the distributed ledger may be liable in tort if its negligent act, omission or misstatement causes loss or damage, including loss due to a security breach or a coding error. A record on the system may be inaccurate causing losses to those relying on it.\(^\text{130}\) An entity’s liability in negligence will depend on whether it owes a duty of care and has breached that duty, whether the breach caused loss or damage, and whether it has effectively contractually excluded liability for this type of loss or damage.

The existence of a duty of care depends in part on the type of loss suffered and by whom it is suffered. In most potential distributed ledger actions, the relevant loss is likely to be ‘pure economic loss’ (that is, economic loss occurring in the absence of, or prior to, any damage to property or person). Courts in common law countries (and many civil law countries) have been reluctant to find that a duty of care exists in cases of pure economic loss for fear of “imposing unreasonable burdens on the freedom of individuals to protect or pursue their own legitimate social and business interests ...”.\(^\text{131}\) However, one may be liable in negligence for pure economic loss in certain

\(^\text{125}\) See on the US: The Restatement (Second) of Torts § 217 and § 218; on Australia: Penfolds Wines Pty Ltd v Elliott (1946) 74 CLR 204; and on the UK: Torts (Interference With Goods) Act 1977 (UK).

\(^\text{126}\) Cf. Bayern, supra note 21, at 29-31 (holding that a Bitcoin is intangible personal property); Schroeder, supra note 17, at 23-42 (arguing that Bitcoin is a “general intangible” under the US Uniform Commercial Code).

\(^\text{127}\) The answer partly depends on whether property doctrine such as trespass to chattel may be expanded into the electronic context. The case law and articles are too numerous to be discussed here in detail. For an overview from the US perspective, see David M. Fritch, Click Here For Lawsuit – Trespass to Chattels in Cyberspace, 9 J. TECH. L. & POL’Y 31 (2004); Laura Quilter, The Continuing Expansion of Cyberspace Trespass to Chattels, 17 BERKELEY TECH. L. J. 421 (2002).

\(^\text{128}\) But, see Bayern, supra note 21, at 33 note 28.

\(^\text{129}\) See for the common law: Bayern, supra note 21, at 33 note 28 (holding that “interference with individually owned bitcoins via a technological vulnerability on the owner’s computer system probably amounts to conversion”). On German civil law, see ss. 826 of the Bürgerliches Gesetzbuch, and s. 1295(2) of the Austrian General Civil Law Book (granting damages for pure economic loss). See articles 1382 et 1383 du code civil français. See Edward A. Tomlinson, Tort Liability in France for the Act of Things: A Study of Judicial Lawmaking, 48 L.A. L. REV. 1299-1367, 1314 (1988) (“These articles, everyone agreed, imposed liability only when the plaintiff established that the defendant's intentional (article 1382) or negligent (article 1383) wrongdoing caused the plaintiff's injury”).

\(^\text{130}\) See Vernon Valentine Palmer, A Comparative Law Sketch of Pure Economic Loss, 305-6, in COMPARATIVE TORT LAW: GLOBAL PERSPECTIVES (Mauro Bussani & Anthony J. Sebok, eds., 2015), regarding potential liability for flawed data on which other parties rely.

\(^\text{131}\) Perre v Apand (1999) 198 CLR 180, 218. See id., at 315 et seq.
situations, especially if the plaintiff was a member of a class exposed to foreseeable loss by the defendant’s conduct whose members were ascertainable by the defendant and if imposing the duty does not unreasonably interfere with the defendant’s commercial freedom. Some common law countries also have statutory provisions that extend the duty of care to apply in cases of pure economic loss. For example, in New South Wales in Australia, the Civil Liability Act of 2002 includes ‘economic loss’ in the definition of ‘harm’ and a person may be negligent in failing to take precautions against a risk of harm if the the risk was foreseeable and not insignificant, and a reasonable person in the person’s position would have taken those precautions.

The relevant operator might establish that no duty of care existed, particularly if the plaintiff is a second or third line victim and not part of an ascertainable class. Liability for pure economic loss is therefore more likely in the case of smaller, permission-based blockchains where the class of plaintiffs is readily ascertainable, although the plaintiff would still need to prove the entity breached its duty of care (by, for instance, not meeting the standard of a reasonable node or software developer) and that this breach caused the plaintiff’s loss. Operators may contractually exclude liability for negligence in these situations. However, such an exclusion clause may be void under consumer legislation or subject to narrow construction by the courts.

Over time, and painfully slowly from the perspective of technical innovation, courts in jurisdictions that allow tort claims for pure economic loss will shape the duties of care in the DLT context as distributed ledgers gain importance in business over time. This could result, for instance, in judicial pronouncements regarding the appropriate announcement time and method for code modifications, the required bit size and node computing power for the modification, and the necessary diligence prior to the new code’s release. In a way, the strictest jurisdiction involved may determine the level of care for the whole ledger. The important point here is, again, that groups 1 to 4 in our DLT hierarchy cannot act as they wish; rather they need to keep the reasonable expectations of other participants when developing the code further. Material changes in code development, such as increasing the number, or speed, of Bitcoins to be mined could violate the developers’ duty of care.

133 For example, see ss. 5, 5B(1) of the Civil Liability Act 2002 (NSW).
135 We do not share the generic view stated by Bayern, supra note 21, at 33 note 28 (arguing that Bitcoin owners reasonably intend to take the risk associated with further evolution of the Bitcoin computer system). Bitcoin has moved beyond an assembly of anarchic code developers into the commercial sphere. To the same extent as this development has amended the economic importance of Bitcoin, ledger participants must take into account the reasonable expectations of other participants when developing the code further. Material changes in code development, such as increasing the number, or speed, of Bitcoins to be mined could violate the developers’ duty of care.
136 As to jurisdiction, see infra, at III.C.2. and V.
3. General Partnership or Joint venture

The criteria of partnership law as to when a group of joint actors will be a partnership differ from jurisdiction to jurisdiction. While under the laws of some jurisdictions the joint pursuit of a (joint) objective suffices to establish an unincorporated company, the law of most common law jurisdictions require for a general partnership the sharing of profits. If a cooperation is a partnership it will usually result in joint liability.

For instance, while participation in a clearing and settlement distributed ledger system that relies on all nodes’ mutual cooperation for identifying true transactions may be deemed a joint pursuit of a shared objective sufficient under some civil laws to establish a joint venture, the fee and profit sharing agreement will determine whether such a blockchain is deemed a partnership under common law. As long as profit opportunities are held by a third-party distributed ledger sponsor / organizer and the nodes bear their own expenses and are rewarded on predetermined basis as with Bitcoin, the risk that the system is a partnership at common law is very low indeed. However, if in a permissioned blockchain the network of validation nodes offers the services of the network to third party users which pay ‘the network’ for these services, the system may be deemed a partnership; and in turn all validation nodes as partners may be liable vis-à-vis third parties.

While the former shows that there is significant liability risk, the case of the DAO illustrates the potential magnitude of the risk. In the DAO, all investors jointly voted on investment proposals, all held jointly the assets acquired, no legal entity was positioned as a liability shield in between assets and investors, and all investors agreed that they were to share the profits generated by the assets. If the DAO’s assets had generated losses rather than profits (for instance, people working in a factory held by the DAO were harmed by an accident) all investors could be held to be partners and personally liable.

As a rule of thumb the risk of liability associated with DLT participation based on partnership law is the greater:

137 Notably, German law on the Gesellschaft bürgerlichen Rechts (“unincorporated company”). In particular, it has been held that certain developer associations in the open source domain such as the Apache Software Foundation or core developer groups qualify as unincorporated companies if in addition to the joint purpose of further developing an open source software there is some, albeit purely factual, organizational structure. See Jaeger & Metzger, supra note 113, at ¶193-200. The same applies to Blockchain core developer groups surrounding Bitcoin and Ethereum, in particular the Bitcoin foundation.

138 An example could be provided by the Swiss giro network case BGE 121 III 310, 314-15 where the Swiss Federal Court has taken the view that for purposes of external liability the network should not be regarded as a collection of bilateral contracts but as a multilateral co-operative system similar to an unincorporated business organization; the argument rests on the ground that one bank could not meet its obligation without the other so co-operation was an implicit condition of the contract. On the common law perspective, see Collins, supra note 95, at 64-71 (“Such a radical departure from the ordinary principles of contractual responsibility seems unlikely to be imitated in the common law”).

139 Other features missing in permissionless systems may include the lack of a centralized coordinating authority that receives and distributes the residual profits.

140 This view has been shared by Hinkes, supra note 17.
the more a server owner benefits from participating in the distributed ledger through profits (as long as there are others who benefit in the same way);

- the greater its influence on the server design, set-up or update, with ‘creators’ being more influential than ‘simple users’; and

- the greater its influence on the decision to let others use or be excluded from using the distributed ledger.

From the last consideration follows that the function of a validation node in a permissioned blockchain with a veto right against access or updates (hereinafter called ‘consortium blockchain’) is more likely to lead to personal liability than the ‘simple’ mining function in Bitcoin. The result of the former may well be not only mutualization of data processing but also mutualization of liabilities and risks.

4. Specific Legislation, in particular Competition Law

Regulators have suggested that DLT can pose a risk to fair competition and orderly markets. For example:

ESMA anticipates … [e]arly [DLT] participants might refuse or impose conditions on new members that make it unduly difficult or costly for them to join the DLT network. … Also, it may become increasingly difficult to develop competing systems through time for cost or technical reasons, e.g., patents that would protect certain components of the technology or the need to ensure interoperability with existing systems. This could drive some firms out of the market and lead to a monopoly-like situation with negative consequences on the cost and quality of the services.141

If DLT functions as a technological barrier that enables or facilitates monopolies additional liability may stem from competition / antitrust law. This is of great importance since competition laws often impose antitrust liability on different criteria from contract or tort law. For instance, under European competition law the definition of the responsible party may include the parent and subsidiary companies.142

While beyond the scope of this paper, market participants involved in a distributed ledger system must keep this and other conduct-related legislation (such as data

141 See ESMA, supra note 2, at 11, ¶37.

protection,143 copyright laws,144 consumer protection laws,145 tax laws,146 AML/CFT,147 landlord-tenant laws148 etc.) in mind.

5. ‘Code-as-law’ Defence

Defendants in a lawsuit may raise the ‘code-as-law’ defence. The argument (raised for instance by the hacker that captured the DAO’s Ether149) is if code defines what is ‘law’, anything possible under the coded design is ‘legal’.

From a lawyer’s perspective the argument is weak. If someone writes code under which the person is entitled to steal others’ money, the code will not legitimize theft. The power to make uniform rules is vested with the formal law making bodies of the specific legal / governmental system: code is \textit{not} law.

However, the original, unamended software design or a new software design that was the result of the agreed governance process150 may be considered \textbf{in a contractual claim} as a characteristic of the service or product. This is because contractual partners – in our DLT hierarchy groups 1 to 4 – have voluntarily chosen to use the code-based services and product as they are. For instance, in a proof-of-work consensus model the fact that consensus building takes up to 15 minutes is inherent to the model and not a breach of contract.

As a general matter third parties – in our hierarchy group 5 – may or may not have accepted this DLT characteristic. If for instance a third party has standing under tort law, it may be able to recover for an unduly long closing time for a DLT-based transaction.

IV. Impact on Blockchain Participants

Given that there is liability risk to entities involved in or in contact with a DLT system, participants as well as regulators are well advised to take legal as well as technical precautions. What might these measures look like?

143 Cf. Gabison, \textit{supra} note 51, at 330-335; Matthias Berberich & Malgorzata Steiner, \textit{Blockchain Technology and the GDPR - How to Reconcile Privacy and Distributed Ledgers?}, 2 EUR. DATA PROTECTION L. REV. 422 (2016).

144 Cf. Gabison, \textit{supra} note 51, at 335-339.

145 See, on smart contracts, Koulu, \textit{supra} note 92, at 67.

146 \textit{Supra} note 20.

147 \textit{Supra} note 19.

148 Cf. Christopher, \textit{supra} note 7, at 155 (arguing that access to an apartment governed by a blockchain may violate landlord-tenant laws if the blockchain inhibits the tenant’s access following the tenant’s default).

150 For this reason, the DAO’s hacker’s argument was flawed in two ways: First, code is not law; property, criminal and other law apply. Second, under the DAO’s governance arrangement, financial transactions were to be agreed on by all investors rather than one user (the hacker) alone.
A. Participation as Operational Risk Contingent Liability

Centralized ledgers not only centralize processes, but also liability.

Formerly, when looking at central counterparties market participants did not only pay for processing, but also for the risk cushion provided by one highly regulated and very solvent entity. Blockchain has the potential to mutualize control over these entities. However, under legal principles all over the world, joint control is likely to come along with joint liability.

In light of the issues raised in previous sections, it would be inappropriate to treat potential liability risk as non-existent. In a non-technical sense, participation brings about a contingent liability which needs to be considered as part of the IT-based operational risk.

B. Provisioning against Risk: Capital Requirements and/or Insurance

The Basel 3 capital adequacy rules while recognizing information systems and IT importance treat such risks as but one type of operational risk. Under the Basel 3 Principles for Sound Management of Operational Risk:

> [m]anagement should ensure the bank has a sound technology infrastructure that meets current and long-term business requirements by providing sufficient capacity for normal activity levels as well as peaks during periods of market stress; ensuring data and system integrity, security, and availability; and supporting integrated and comprehensive risk management. … Management should make appropriate capital investment or otherwise provide for a robust infrastructure at all times, particularly before … new products are introduced.

The Risk Management Principles lack further details.

Under the Basel 3 standard approach banks must hold capital against operational risk based on the income generated in the last reference period. Under the advanced measurement approach (AMA), intermediaries must collect, in a loss database, for each incident: (1) the date of the loss event; (2) the date of its discovery; (3) the loss that was related to it; and (4) whether that loss was (fully or partially) recovered from insurance; and calculate the operational risk charge based on the historic data.

151 See Vlasta Svatá & Martin Fleischmann, IS/IT Risk Management in Banking Industry, 2011 ACTA OECONOMICA PRAGENSIA 3, 42-60 (2011) (stating that current treatment of IS/IT-based risk is inadequate). To this day, the Basel risk management website has not devoted a special workflow to IS/IT risk, see Basel Committee – Risk Management, BANK FOR INTERNATIONAL SETTLEMENTS, http://www.bis.org/publ/bcbs195.pdf.

154 Notably, the risk framework dating back to Basel 2 (prior to the GFC) does not mention IS/IT risk as separate event types, but looks at the results, including business disruption and failed execution. See appendix 9 of Basel II.
The Basel operational risk management framework is under revision; and under that revision a clear link of operational risk management to a bank’s technological processes is required.155 Given the expected large loss impact and frequency of events, and the intermediary’s collection of all risk-related events in few global databases,156 recognition of DLT risk and a predetermined risk budget similar to that for participation in a syndicate or other types of joint ventures could well be the outcome.

Related concerns arise particularly in the context of systems which could be classified as financial infrastructure. Financial infrastructure attracts separate and additional requirements under guidelines from IOSCO and the Committee on Payment and Market Infrastructures (CPMI) of the Bank for International Settlements (BIS).157 The CPMI principles contain detailed requirements in terms of capital, risk management etc which would clearly apply in the context of DLT-based payment and securities settlement systems.

Even in the absence of capital adequacy rules, given that losses from DLT participation can be serious enough and sufficiently likely to be considered by top management, a financial intermediary’s management could be required to establish a DLT-related risk budget, enter into insurance, or limit DLT participation to very large and establish counterparties. Be this as it may, DL participation does not come for free and requires consideration of each function in the DLT hierarchy and whether it adds to, or reduces, liability risk.

C. Distributed Ledger – Concentrated Ownership?

Liability matters little for a private party (an individual) with few assets who is therefore unlikely to become the target of a law suit (with anarchic code developers being an eminent example). Legal uncertainty, ambiguity and lack of assets can function as a liability shield for individuals as the reward will not justify the costs of enforcement. The perspective of a globally operating financial or production conglomerate is different: those entities are likely targets of lawsuits, regardless of the little legal certainty provided by legislation and case law. This could lead to risk multiplication given that someone may test the waters, and thereby influence the set-up of any distributed ledger, and potentially limit the use cases of DLT. Given the international dimension the legal assessments necessary to provide a full view of liability risk includes the laws of multiple jurisdictions. This is particularly true of a permissionless blockchain. All of this together turns the drafting of access terms, and decisions while part of the system, into complex and costly endeavours.

Both liability exposure and transaction costs for its assessment have implications for the ideal legal set-up of a DLT structure. As such, we may observe that the ideal

156 Marco Folpmers, \textit{Basel’s New Approach to Operational Risk: A Step Backwards}, GARP (April 22, 2016), http://www.garp.org/#!/risk-intelligence/all/all/a1Z40000003CA7oEAG/basels-new-approach-operational-risk (last visited July 10, 2017) (“Since banks struggle with the collection of sufficient loss data, consortia (such as ORX) have arisen in which banks pool operational loss data”).

setting could – ironically – take the form of a concentrated legal structure in a
distributed ledger system.

Concentration may be achieved by two means. First, participation in the distributed
ledger may be limited to controlled entities of a conglomerate. If, for instance, a large
multinational bank, tech enterprise or financial market infrastructure operator and its
subsidiaries set up a system the desirable tech characteristic of additional trust may be
achieved while liability risk is low. Second, multiple parties jointly interested in one
service could leave the set-up and operation of the system to one global enterprise
sufficiently large and capitalized to bear liability risk and acquire those services on a
fee basis,158 or set up and capitalize such an entity as a joint venture themselves. In
this case their role could be that of simple users, related service providers or in some
cases independent third parties (cf. DLT hierarchy groups 3-5). Be this as it may –
liability is a factor in structuring distributed ledger transactions that needs to be
considered in the existing legal and regulatory framework and which may well lead to
concentrated ownership in distributed ledgers.

V. Law as a Factor in DLT Structuring

The claim that risk vanishes simply due to the use of a blockchain is, from a legal
perspective, ridiculous.

Our analysis of the laws of the most important legal systems has revealed four general
principles as to liability. First, the more the ledger is organized or based on a
predetermined governance structure (most evident in permissioned ledgers), the
greater the risk that participants, in particular those participants that are influential and
‘control’ the ledger, will be held liable for breach of contract or as partners of the
‘ledger partnership’.

Second, cooperation of sophisticated financial and business services requires
organization and, if the resource dealt with by the ledger is essential, investors will
demand control rights in return for their investment. Common sense and economic
need will push for permissioned ledgers, so liability will be a major factor. Large
scale economic use of the ledger will come with potential liability.

Third, permissionless ledgers are not the answer to the liability issue. Even in
unpermissioned ledgers (for instance Bitcoin), the liability risk is not zero, but rather
highly case specific. There is a strong differentiation of treatment among countries
and low levels of legal certainty; and thus higher legal costs and risk premia,
especially for transnational permissionless systems.

Fourth, our thesis that liability matters in the establishment of distributed ledgers
holds notwithstanding that the legal basis for liability will vary across jurisdictions.
Some liability will arise from contract or liability statutes, some from special
legislation, and some from tort or partnership law, but the net result of the joint /
coordinated activity will most often be joint liability. From the perspective of globally
active financial institutions and multinational enterprises that liability can result in
different ways legallymakes it far more difficult to enter into distributed ledgers

158 This seems to be the business model of IBM. Please note that an actor’s liability risk is not affected
by outsourcing. Hence, if the DL set-up and operation is deemed an outsourcing, liability will remain.
across countries and with other firms. The **risk of entangling one's own balance sheet with other ledger parties' obligations** is a serious barrier to cross-firm ledgers.

Firms will try to mitigate these risks with choice of law and jurisdiction clauses, but this approach will be less effective with statutory, tortious and partnership liability and with services offered to consumers (given the mandatory jurisdiction and applicable law typically associated with consumer transactions). Parties will choose the governing law to minimize liability, but liability risk may well harm, in particular, the development of cross-border ledger systems with many nodes.

The risk of distributed liability of distributed ledgers suggests that concentrated ownership is the most likely way of legally structuring distributed ledgers. Distributed ownership may be conditioned on a higher degree of legal certainty and a greater degree of harmonization across countries. Harmonization of private law consequences of DLT systems could be most useful, although of course this will be a long-term undertaking.\(^{159}\) In addition, international regulatory cooperation in development of minimum regulatory standards will be key to addressing potential risks, and this begins with the technical harmonization presently underway.\(^{160}\)

From a legal and regulatory perspective, the starting point must be to focus on the sorts of issues that will arise when any of the core attributes which make DLT systems attractive - namely their security, immutability and transparency - fail, as fail they will. While DLT systems may be very secure from a technological perspective, from a legal perspective they may well spread risk that was formerly concentrated in very few parties (or perhaps one party), across all system participants (nodes). With the realization that the failure of a distributed ledger system represents a risk, financial institutions will have to adjust their business strategies to accommodate the contingent liability involved in DLT. From the standpoint of immutability, once an error is embedded in the blockchain, this may be highly problematic, legally, in that often law requires the ability to rectify errors as a matter of law in a way foreign to DLT.\(^{161}\) Instead of rectification, plaintiffs may turn to compensation. Likewise, transparency requires careful consideration in design to avoid liability for inadequate data protection.

As a result, DLT will have different impacts than many expect. In particular, liability will not be eliminated, but may instead be spread across the system, and financial intermediaries involved in a distributed ledger should arguably hold capital or acquire insurance for contingent liabilities stemming from DLT participation. Likewise, operators may, in time, need to be governed by regulatory requirements similar to those governing other providers of potentially systemically important infrastructure, such as traditional centralized payment and settlement systems.

\(^{159}\) See Paech, *supra* note 17, at 32-37 (examining options available under private international law to allocate blockchain arrangements across jurisdictions).

\(^{160}\) The International Organization for Standardization (ISO) has established a new technical committee to work on the harmonization of standards for blockchain and DLT, with Australia as the chair, see *ISO/TC 307: Blockchain and Distributed Ledger Technologies*, INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, https://www.iso.org/committee/6266604.html.

Part of the thrill of blockchain to date has been its disregard of the law. With law in the picture, data are less attractively housed in distributed ledgers. This does not mean liability will exist in all cases. However liability matters, and distributed ledgers may, in time, most often be legally structured (particularly in permissioned systems) as a joint venture where all servers are owned and operated – ironically – by one entity, or a small number of specified entities, rather than as a cooperation among multiple entities.